Skip to main content
Log in

Simulation of Steam Methane Reforming in a Membrane Reactor with a Nickel Catalyst and a Palladium Alloy Foil

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract—

A model of steam methane reforming in a catalytic reactor has been developed the working part of which is two cylindrical chambers separated by a membranous wall. The upper chamber is evacuated while the lower one is maintained at atmospheric pressure. With a uniform supply of raw materials along the outer perimeter of the lower chamber, the problem is reduced to finding the average flows of CH4, H2O, CO2, CO, and H2 from the solution of a system of five nonlinear ordinary differential equations of the first order. The calculations were carried out for a Pd–6% Ru membrane in the temperature range of 673 K < T < 973 K at a steam/methane inlet flow ratio of 3 and a feed rate of 1800–9600 L/h. As a result of comparing the calculations with experimental data, a theoretical substantiation of the main regularities of the process observed in practice was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ramachandran, R. and Menon, R.K., An overview of industrial uses of hydrogen, Int. J. Hydrogen Energy, 1998, vol. 23, no. 7, pp. 593–598. https://doi.org/10.1016/S0360-3199(97)00112-2

    Article  CAS  Google Scholar 

  2. Kirillov, V.A., Meshcheryakov, V.D., Brizitskii, O.F., and Terent’ev, V.Ya., Analysis of a power system based on low-temperature fuel cells and a fuel processor with a membrane hydrogen separator, Theor. Found. Chem. Eng., 2010, vol. 44, no. 3, pp. 227–235. https://doi.org/10.1134/S0040579510030012

    Article  CAS  Google Scholar 

  3. Schädel, B.T., Duisberg, M., and Deutschmann, O., Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst, Catal. Today, 2009, vol. 142, p. 42.

    Article  Google Scholar 

  4. Butcher, H., Quenzel, C.J.E., Breziner, L., Mettes, J., Wilhite, B.A., and Bassard, P., Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via steam reforming, Int. J. Hydrogen Energy, 2014, vol. 39, no. 31, p. 18046.

    Article  CAS  Google Scholar 

  5. Shigarov, A.B., Meshcheryakov, V.D., and Kirillov, V.A., Use of Pd membranes in catalytic reactors for steam methane reforming for pure hydrogen production, Theor. Found. Chem. Eng., 2011, vol. 45, no. 5, p. 595. https://doi.org/10.1134/S0040579511050356

    Article  CAS  Google Scholar 

  6. Gryaznov, V.M., Catalysis on membranes with selective permeability, Dokl. Akad. Nauk SSSR, 1969, vol. 189, p. 794.

    CAS  Google Scholar 

  7. Gryaznov, V.M., Hydrogen permeable palladium membrane catalyst. An aid to the efficient production of ultra pure chemicals and pharmaceuticals, Platinum Met. Rev., 1986, vol. 36, p. 68.

    Google Scholar 

  8. Yun, S. and Oyama, S.T., Correlations in palladium membranes for hydrogen separation: A review, J. Membr. Sci., 2011, vol. 375, nos. 1–2, pp. 28–45. https://doi.org/10.1016/j.memsci.2011.03.057

    Article  CAS  Google Scholar 

  9. Orekhova, N.V., Kustov, L.M., Kucherov, A.V., Finashina, E.D., Ermilova, M.M., and Yaroslavtsev, A.B., Membrane catalytic systems for C2–C4 alkane conversion, Nanotechnol. Russ., 2012, vol. 7, pp. 560–574. https://doi.org/10.1134/S1995078012060109

    Article  Google Scholar 

  10. Takao, K., Yoichi, I., Takaya, I., Hisataka, Y., Hiroyuki, T., Hideaki, H., Yasuhiro, T., and Masaya, I., Performance evaluation of membrane on catalyst module for hydrogen production from natural gas, Int. J. Hydrogen Energy, 2013, vol. 38, p. 6079.

    Article  Google Scholar 

  11. Li, P., Wang, Zh., Qiao, Zh., Liu, Y., Cao, X., Li, W., Wang, I., and Wang, Sh., Recent developments in membranes for efficient hydrogen purification, J. Membr. Sci., 2015, vol. 495, p. 130.

    Article  CAS  Google Scholar 

  12. Anzelmo, B., Wilcox, I., and Liguori, S., Hydrogen production via natural gas steam reforming in Pd–Au membrane reactor. Comparison between methane and natural gas steam reactions, J. Membr. Sci., 2018, vol. 568, p. 113.

    Article  CAS  Google Scholar 

  13. Didenko, L.P., Sementsova, L.A., Chizhov, P.E., and Dorofeeva, T.V., Influence of the propane content in methane on the parameters of steam reforming of a mixture in a membrane reactor with the industrial nickel catalyst and Pd–Ru alloy foil, Int. J. Hydrogen Energy, 2019, vol. 44, p. 26396.

    Article  CAS  Google Scholar 

  14. Babak, V.N., Didenko, L.P., and Zakiev, S.E., Hydrogen transport through a membrane module based on a palladium foil, Theor. Found. Chem. Eng., 2013, vol. 47, no. 6, pp. 719–729. https://doi.org/10.1134/S004057951306002X

    Article  CAS  Google Scholar 

  15. Boeltken, T., Wunsch, A., Gietzelt, T., Pfeifer, P., and Dittmeyer, R., Ultra-compact microstructured methane steam reforming with integrated palladium membrane for on-site production of pure hydrogen: Experimental demonstration, Int. J. Hydrogen Energy, 2014, vol. 30, p. 18058.

    Article  Google Scholar 

  16. Didenko, L.P., Savchenko, V.I., Sementsova, L.A., and Bikov, L.A., Hydrogen flux through the membrane based on the Pd–In–Ru foil, Int. J. Hydrogen Energy, 2016, vol. 41, p. 307.

    Article  CAS  Google Scholar 

  17. Babak, V.N., Didenko, L.P., Kvurt, Yu.P., and Sementsova, L.A., Studying the operation of a membrane module based on palladium foil at high temperatures, Theor. Found. Chem. Eng., 2018, vol. 52, no. 2, pp. 181–194. https://doi.org/10.1134/S004057951802001X

    Article  CAS  Google Scholar 

  18. Slovetsky, D.I. and Chistov, E.M., RF Patent 2416460, 2011.

  19. Burkhanov, G.S., Gorina, N.B., Kolchugina, N.B., Roshan, N.R., Slovetsky, D.I., and Chistov, E.M., Palladium-based alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures, Platinum Met. Rev., 2011, vol. 55, no. 1, pp. 3–12. https://doi.org/10.1595/147106711x540346

    Article  CAS  Google Scholar 

  20. Tong, H.D., Berenschot, J.W.E., de Boer, M.J., Gardeniers, J.G.E., Wensink, H., Jansen, H.V., Nijdam, W., Elwenspoek, M.C., Gielens, F.C., and van Rijn, C.J.M., Microfabrication of palladium-silver alloy membranes for hydrogen separation, J. Microelectromech. Syst., 2003, vol. 12, no. 5, pp. 622–629. https://doi.org/10.1109/JMEMS.2003.818458

    Article  CAS  Google Scholar 

  21. Tong, J., Shirai, R., Kashima, Y., and Matsumura, Y., Preparation of a pinhole-free Pd–Ag membrane on a porous metal support for pure hydrogen separation, J. Membr. Sci., 2005, vol. 260, nos. 1–2, pp. 84–89. https://doi.org/10.1016/j.memsci.2005.03.039

    Article  CAS  Google Scholar 

  22. Mazali, I.O., Filho, A.G.S., Viana, B.C., Filho, J.M., and Alves, O.L., Size-controllable synthesis of nanosized-TiO2 anatase using porous Vycor glass as template, J. Nanopart. Res., 2006, vol. 8, p. 141. https://doi.org/10.1007/s11051-005-9003-3

    Article  CAS  Google Scholar 

  23. Huang, Y. and Dittmeyer, R., Preparation of thin palladium membranes on a porous support with rough surface, J. Membr. Sci., 2007, vol. 302, nos. 1–2, pp. 160–170. https://doi.org/10.1016/j.memsci.2007.06.040

    Article  CAS  Google Scholar 

  24. Pizzi, D., Worth, R., Baschetti, M.G., Sarti, G.C., and Noda, K., Hydrogen permeability of 2.5 μm palladium–silver membranes deposited on ceramic supports, J. Membr. Sci., 2008, vol. 325, no. 1, pp. 446–453. https://doi.org/10.1016/j.memsci.2008.08.020

    Article  CAS  Google Scholar 

  25. Gade, S.K., Thoen, P.M., and Way, J.D., Unsupported palladium alloy foil membranes fabricated by electroless plating, J. Membr. Sci., 2008, vol. 316, nos. 1–2, pp. 112–118. https://doi.org/10.1016/j.memsci.2007.08.022

    Article  CAS  Google Scholar 

  26. Zhang, X., Xiong, G., and Yang, W., A modified electroless plating technique for thin dense palladium composite membranes with enhanced stability, J. Membr. Sci., 2008, vol. 314, nos. 1–2, pp. 226–237. https://doi.org/10.1016/j.memsci.2008.01.051

    Article  CAS  Google Scholar 

  27. Bayati, B., Bayat, Y., Charchi, N., Ejtemaei, M., Babaluo, A.A., Haghighi, M., and Drioli, E., Preparation of crack-free nanocomposite ceramic membrane intermediate layers on α-alumina tubular supports, Sep. Sci. Technol., 2013, vol. 48, no. 13, pp. 1930–1940. https://doi.org/10.1080/01496395.2013.786728

    Article  CAS  Google Scholar 

  28. Calles, J.A., Sanz, R., Alique, D., Furones, L., Marín, P., and Ordoñez, S., Influence of the selective layer morphology on the permeation properties for Pd-PSS composite membranes prepared by electroless pore-plating: Experimental and modeling study, Sep. Purif. Technol., 2018, vol. 194, pp. 10–18. https://doi.org/10.1016/j.seppur.2017.11.014

    Article  CAS  Google Scholar 

  29. Xu, J. and Froment, G.F., Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics, AIChE J., 1989, vol. 35, no. 1, pp. 88–96. https://doi.org/10.1002/aic.690350109

    Article  CAS  Google Scholar 

  30. Lin, Y.M., Liu, Sh.I., Chuang, Ch.H., and Chu, Y.T., Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming: Experimental and modeling, Catal. Today, 2003, vol. 82, no. 1, p. 127.

    Article  CAS  Google Scholar 

  31. Falko, M. and Marrelli, P.L., Heat transfer and hydrogen permeability in modelling industrial membrane reactors for methane steam reforming, Int. J. Hydrogen Energy, 2007, vol. 32, p. 2094.

    Article  Google Scholar 

  32. Krylov, O.V., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Akademkniga, 2004.

  33. Oliveria, E.L.G., Grande, C.A., and Rodrignes, A.E., Steam methane reforming in a Ni/Al2O3 catalyst: Kinetics and diffusional limitations in extrudates, Can. J. Chem. Eng., 2009, vol. 87, p. 945.

    Article  Google Scholar 

  34. Demidovich, B.P., Maron, I.A., and Shuvalov, E.Z., Chislennye metody analiza (Numerical Methods of Analysis), Moscow: Gos. Izd. Fiz.-Mat. Lit., 1963.

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 13-03-12419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Babak.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babak, V.N., Didenko, L.P., Kvurt, Y.P. et al. Simulation of Steam Methane Reforming in a Membrane Reactor with a Nickel Catalyst and a Palladium Alloy Foil. Theor Found Chem Eng 55, 390–402 (2021). https://doi.org/10.1134/S0040579521030027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521030027

Keywords:

Navigation