Skip to main content
Log in

Thermohydrodynamic Processes in Spray Drying with Convective–Radiation Energy Supply

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The results of numerical modeling of the heat and mass transfer of drops during drying of a liquid under the conditions of convective–radiation energy supply and counterflows of the heat-transfer fluid are presented. The effect of various parameters, in particular, density of the infrared flux, velocity of the counterflows of the heat-transfer fluid, and overheating temperature of the liquid before drying, on the kinetics of evaporation of the drops, is analyzed. The possibilities for the reduction of the duration of drying of the drops due to the radiation action are shown. The results of experimental studies of the effect of the infrared flux on the performance indicators of a spray drying unit are presented, which provide evidence of a decrease in the specific energy costs for moisture evaporation and an increase in the moisture tension, productivity, and efficiency coefficient of the unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Tutova, E.G. and Kuts, P.S., Sushka produktov mikrobiologicheskogo proizvodstva (Drying of Products in Microbiological Production), Moscow: Agropromizdat, 1987.

  2. Dolinskii, A.A. and Maletskaya, K.D., Raspylitel’naya sushka: v dvukh tomakh. T. 1. Teplofizicheskie osnovy. Metody intensifikatsii i energosberezheniya (Spray Drying, 2 vols., vol. 1: Thermal and Physical Fundamentals: Methods for Intensification and Energy Saving), Kyiv: Akademperiodika, 2011.

  3. Handbook of Industrial Drying, Mujumdar, A.S., Ed., Boca Raton, Fla.: CRC, 2014.

    Google Scholar 

  4. Lykov, M.V., Sushka v khimicheskoi promyshlennosti (Drying in the Chemical Industry), Moscow: Khimiya, 1970.

  5. Kudra, T. and Mujumdar, A.S., Advanced Drying Technologies, New York: Marcel Dekker, 2002.

    Google Scholar 

  6. Akulich, P.V., Dragun, V.L., and Kuts, P.S., Tekhnologii i tekhnika sushki i termoobrabotki materialov (Technologies and Techniques for Drying and Heat Treatment of Materials), Minsk: Belorusskaya Nauka, 2006.

  7. Akulich, P.V., Raschety sushil’nykh i teploobmennykh ustanovok (Design of Drying and Heat-Exchange Installations), Minsk: Belaruskaya Navuka, 2010.

  8. Akulich, P.V. and Akulich, A.V., Konvektivnye sushil’nye ustanovki: metody i primery rascheta (Convective Drying Installations: Methods and Examples of Design), Minsk: Vysheishaya Shkola, 2019.

  9. Modern Drying Technology, vol. 5: Process Intensification, Tsotsas, E. and Mujumdar, A.S., Eds., Weinheim: Wiley-VCH, 2014.

    Google Scholar 

  10. Wu, Z., Yue, L., Li, Z., et al., Pulse combustion spray drying of egg white: Energy efficiency and product quality, Food Bioprocess Technol., 2015, no. 8, p. 148.

  11. Gulyaev, Yu.V., Belgorodskii, V.S., and Kosheleva, M.K., Review of papers presented at the “Second International Kosygin Readings: Energy- and Resource-Efficient Environmentally Safe Technologies and Equipment,” an International Scientific and Technical Symposium Celebrating the 100th Anniversary of the Kosygin State University of Russia, Theor. Found. Chem. Eng., 2020, vol. 54, no. 3, pp. 522–527. https://doi.org/10.1134/S0040579520030057

    Article  CAS  Google Scholar 

  12. Wisniewski, R., Spray drying technology review, Proc. 45th International Conference on Environmental Systems, Bellevue, Wash., 2015, p. 1.

  13. Feklunova, Yu.S., Development and scientific substantiation of a method for the spray drying of pumpkin puree with convective-radiative energy supply, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Astrakhan: Astrakhan State Technical Univ., 2015.

  14. Akulich, P.V., BY Patent 18467, Ofits. Byull., 2013, no. 2, p. 23.

  15. Akulich, P.V., Borodulya, V.A., and Slizhuk, D.S., Methods for increasing the efficiency of spray drying processes, Energoeffektivnost, 2018, no. 4, p. 28.

  16. Akulich, P.V., Heat and mass exchange of a drop of a solution subjected to a combined energy action under conditions of deepening of the evaporation zone, J. Eng. Phys. Thermophys., 2016, vol. 89, no. 3, pp. 539–547. https://doi.org/10.1007/s10891-016-1408-6

    Article  CAS  Google Scholar 

  17. Akulich, P.V., Simulation of heat and mass transfer of droplets in drying an overheated liquid under conditions of combined energy effect, J. Eng. Phys. Thermophys., 2019, vol. 92, no. 2, pp. 389–397. https://doi.org/10.1007/s10891-019-01943-5

    Article  CAS  Google Scholar 

  18. Prakash, S. and Sirignano, W.A., Theory of convective droplet vaporization with unsteady heat transfer in the circulating liquid phase, Int. J. Heat Mass Transfer, 1980, vol. 23, no. 3, pp. 253–268. https://doi.org/10.1016/0017-9310(80)90113-1

    Article  CAS  Google Scholar 

  19. Kozyrev, A.V. and Sitnikov, A.G., Evaporation of a spherical droplet in a moderate-pressure gas, Phys.-Usp., 2001, vol. 44, no. 7, pp. 725–733. https://doi.org/10.1070/PU2001v044n07ABEH000953

    Article  CAS  Google Scholar 

  20. Terekhov, V.I., Terekhov, V.V., Shishkin, N.E., and Bi, K.Ch., Heat and mass transfer in disperse and porous media experimental and numerical investigations of nonstationary evaporation of liquid droplets, J. Eng. Phys. Thermophys., 2010, vol. 83, no. 5, pp. 883–890. https://doi.org/10.1007/s10891-010-0410-7

    Article  CAS  Google Scholar 

  21. Varghese, S. and Gangamma, S., Evaporation of water droplets by radiation: Effect of absorbing inclusions, Aerosol Air Qual. Res., 2007, vol. 7, no. 1, p. 95.

    Article  Google Scholar 

  22. Mezhericher, M., Levy, A., and Borde, I., The influence of thermal radiation on drying of single droplet/wet particle, Drying Technol., 2008, vol. 26, no. 1, p. 78.

    Article  Google Scholar 

  23. Blokh, A.G., Osnovy teploobmena izlucheniem (Fundamentals of Radiative Heat Transfer), Moscow: Gosenergoizdat, 1962.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Akulich.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akulich, P.V., Slizhuk, D.S. Thermohydrodynamic Processes in Spray Drying with Convective–Radiation Energy Supply. Theor Found Chem Eng 55, 30–40 (2021). https://doi.org/10.1134/S0040579521010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521010024

Keywords:

Navigation