Skip to main content
Log in

Nonequilibrium Stage Based Modeling of a Falling Film Distillation Unit

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel nonequilibrium stage based model was developed for a falling film distillation unit. The model combines mass and energy balances in the liquid and vapor phases, without the need of separation efficiency factors. The modeled pilot scale falling film distillation unit is differentiated because the heat supply is carried out axially by means of a thermosyphon. In terms of the algorithm proposed, the central contribution is in reducing the number of variables to be determined by the method, which brings benefits such as reduction of computational time and increase of robustness in the convergence. The results obtained were compared with experimental data from the pilot scale plant, and showed good predictability, with deviations in the top temperature below 2.60%, 6.59% in the distillated ethanol fraction, 12.32% in the resistance power and only one case above 10% for distillate flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ivanov, I.V., Lotkhov, V.A. and Kulov, N.N., Modeling of batch extractive distillation, Theor. Found. Chem. Eng., 2017, vol. 51, no. 3, p. 253.

    Article  CAS  Google Scholar 

  2. Kooijman, H.A. and Taylor, R., Modelling mass transfer in multicomponent distillation, Chem. Eng. J., 1995, vol. 57, no. 2, p. 177.

    CAS  Google Scholar 

  3. Ivanov, I.V., Lotkhov, V.A., Moiseeva, K.A., and Kulov, N.N., Mass transfer in a packed extractive distillation column, Theor. Found. Chem. Eng., 2016, vol. 50, no. 5, pp. 667–677. https://doi.org/10.1134/S0040579516050304

    Article  CAS  Google Scholar 

  4. Katariya, A.M., Kamath, R.S., Moudgalya, K.M., and Mahajani, S.M., Non-equilibrium stage modeling and non-linear dynamic effects in the synthesis of TAME by reactive distillation, Comput. Chem. Eng., 2008, vol. 32, no. 10, p. 2243.

    Article  CAS  Google Scholar 

  5. Krishnamurthy, R. and Taylor, R., A nonequilibrium stage model of multicomponent separation processes. Part I : Model description and method of solution, AIChE J., 1985, vol. 31, no. 3, p. 449.

    Article  CAS  Google Scholar 

  6. Krishnamurthy, R. and Taylor, R., A nonequilibrium stage model of multicomponent separation processes. Part II : Comparison with experiment, AIChE J., 1985, vol. 31, no. 3, p. 456.

    Article  CAS  Google Scholar 

  7. Krishnamurthy, R. and Taylor, R., A nonequilibrium stage model of multicomponent separation processes. Part III: The influence of unequal component-efficiencies in process design problems, AIChE J., 1985, vol. 31, no. 12, p. 1973. https://doi.org/10.1002/aic.690311207

    Article  CAS  Google Scholar 

  8. Yuxiang, Z. and Xien, X., Study on catalytic distillation processes. Part II: Simulation of catalytic distillation processes. Quasi-homogeneous and rate-based model, Chem. Eng. Res. Des., 1992, vol. 70, p. 465.

    Google Scholar 

  9. Taylor, R., Kooijman, H.A., and Hung, J.-S., A second generation nonequilibrium model for computer simulation of multicomponent separation processes, Comput. Chem. Eng., 1994, vol. 18, no. 3, p. 205. https://doi.org/10.1016/0098-1354(94)85009-7

    Article  CAS  Google Scholar 

  10. Pescarini, M.H., Barros, A.A.C., and Wolf-Maciel, M.R., Development of a software for simulating separation processes using a nonequilibrium stage model, Comput. Chem. Eng., 1996, vol. 20, no. 1, p. S279.

    Article  CAS  Google Scholar 

  11. Baur, R., Higler, A.P., Taylor, R., and Krishna, R., Comparison of equilibrium stage and nonequilibrium stage models for reactive distillation, Chem. Eng. J., 2000, vol. 76, no. 1, p. 33.

    Article  CAS  Google Scholar 

  12. Zheng, Y., Ng, F.T.T., and Rempel, G.L., Catalytic distillation:  A three-phase nonequilibrium model for the simulation of the aldol condensation of acetone, Ind. Eng. Chem. Res., 2001, vol. 40, no. 23, p. 5342. https://doi.org/10.1021/ie001104l

    Article  CAS  Google Scholar 

  13. Huang, C., Yang, L., Ng, F.T.T., and Rempel, G.L., Application of catalytic distillation for the aldol condensation of acetone: A rate-based model in simulating the catalytic distillation performance under steady-state operations, Chem. Eng. Sci., 1998, vol. 53, no. 19, p. 3489.

    Article  CAS  Google Scholar 

  14. Klöker, M., Kenig, E.Y., Hoffmann, A., Kreis, P., and Górak, A., Rate-based modelling and simulation of reactive separations in gas/vapour–liquid systems, Chem. Eng. Process., 2005, vol. 44, no. 6, p. 617.

    Article  Google Scholar 

  15. Mendoza, D.F. and Kjelstrup, S., Modeling a non-equilibrium distillation stage using irreversible thermodynamics, Chem. Eng. Sci., 2011, vol. 66, no. 12, p. 2713.

    Article  CAS  Google Scholar 

  16. Chang, L. and Liu, X., Non-equilibrium stage based modeling of heat integrated air separation columns, Sep. Purif. Technol., 2014, vol. 134, p. 73.

    Article  CAS  Google Scholar 

  17. Lu, Y., Stehmann, F., Yuan, S., and Scholl, S., Falling film on a vertical flat plate – Influence of liquid distribution and fluid properties on wetting behavior, Appl. Therm. Eng., 2017, vol. 123, p. 1386.

    Article  Google Scholar 

  18. Pavlenko, A.N., Volodin, O.A., and Surtaev, A.S., Hydrodynamics in falling liquid films on surfaces with complex geometry, Appl. Therm. Eng., 2017, vol. 114, p. 1265.

    Article  CAS  Google Scholar 

  19. Wang, Q., Ma, X., Lan, Z., Chen, J., and Bai, T., Heat transfer characteristics of falling film process on coated division tubes: Effect of the surface configurations, Ind. Eng. Chem. Res., 2010, vol. 49, no. 14, p. 6622.

    Article  CAS  Google Scholar 

  20. Marangoni, C., Meneguelo, A.P., Teleken, J.G., Werled, L.O., Milanez, K.W., Mantelli, M.B.H., Quadri, M.B., Bolzan, A., dos Santos, M.C., Medina, L.C., and Machado, R.A.F., Falling film distillation column with heat transfer by means of a vapor chamber – Part I: Isothermal operation, Chem. Eng. Commun., 2019, vol. 206, no. 8, p. 994. https://doi.org/10.1080/00986445.2018.1542250

    Article  CAS  Google Scholar 

  21. Marangoni, C., Peruzzo, T., Parisotto, I.G.B., Ricardo, V.W., Claumann, C.A., Milanez, K.W., Mantelli, M.B.H., Quadri, M.B., Bolzan, A., dos Santos, M.C., Medina, L.C., and Machado, R.A.F., Falling film distillation column with heat transfer by means of a vapor chamber. Part II: Operation with a temperature profile, Chem. Eng. Commun., 2019, vol. 206, no. 8, p. 1006. https://doi.org/10.1080/00986445.2018.1542255

    Article  CAS  Google Scholar 

  22. Teleken, J.G., Werle, L.O., Parisotto, I.G.B., Marangoni, C., Meneguelo, A.P., Bolzan, A., and Machado, R.A.F., Computational fluid dynamics simulation of the feed distribution system of a falling film distillation device, Proc. 11th International Symposium on Process Systems Engineering, Elsevier Series in Computer Aided Chemical Engineering, vol. 31, Karimi, I.A. and Srinivasan, R., Eds., Amsterdam: Elsevier, 2012, pp. 845–849. https://doi.org/10.1016/B978-0-444-59507-2.50161-X

  23. Marangoni, C., Meneguelo, P.A., Teleken, G.J., Parisotto, I.G.B., Werle, L.O., Machado, R.A.F., dos Santos, M.C., Gomes, A.O., and Medina, L.C., New configuration of a distillation process with reduced dimensions, Chem. Eng. Trans., 2011, vol. 24, p. 799.

    Google Scholar 

  24. Dribika, M. and Sandall, C., Simultaneous heat and mass transfer for multicomponent distillation in a wetted-wall column, Chem. Eng. Sci., 1979, vol. 34, no. 5, p. 733.

    Article  CAS  Google Scholar 

  25. Silva Filho, V.F., Alves, J.L.F., Reus, G.F., Machado, R.A.F., Marangoni, C., and Bolzan, A., Experimental evaluation of the separation of aromatic compounds using falling film distillation on a pilot scale, Chem. Eng. Process., 2018, vol. 130, p. 296.

    Article  Google Scholar 

  26. Barbosa, J.R., Two-phase non-equilibrium models: The challenge of improving phase change heat transfer prediction, J. Braz. Soc. Mech. Sci. Eng., 2005, vol. 27, p. 31.

    Article  Google Scholar 

  27. Sandler, S.I., Chemical and Engineering Thermodynamics, New York: Wiley, 1989.

    Google Scholar 

  28. Chun, K.R. and Seban, R.A., Heat transfer to evaporating liquid films, J. Heat Transfer, 1971, vol. 93, no. 4, p. 391.

    Article  CAS  Google Scholar 

  29. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: Wiley, 2007.

    Google Scholar 

  30. Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Klemens, P.G., Thermophysical Properties of Matter, New York: IFI/Plenum, 1970.

    Google Scholar 

  31. Michaelides, E.E., NBS/NRC steam tables: Thermodynamic and transport properties and computer program for vapor and liquid states of water in SI units, Nucl. Technol., 1986, vol. 75, no. 2, p. 232.

    Article  Google Scholar 

  32. Wilhoit, R.C. and Zwolinski, B.J., Physical and Thermodynamic Properties of Aliphatic Alcohols, New York: American Chemical Society, 1973.

    Google Scholar 

  33. Keenan, J.H., Keyes, F.G., Hill, P.G., and Moore, J.G., Steam Tables – Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases, New York: Wiley, 1969.

    Google Scholar 

  34. Bretsznajder, S., Prediction of Transport and Other Physical Properties of Fluids, Amsterdam: Elsevier, 1971.

    Google Scholar 

  35. Thermal Conductivity: Liquid Mixtures, ESDU Data, London: Engineering Science Data Unit International (ESDU), 1966.

  36. Selected Values of Properties of Hydrocarbons and Related Compounds, American Petroleum Institute Research Project 44, Washington, DC: National Bureau of Standards, 1980.

  37. Parks, G.S., Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols, J. Am. Chem. Soc., 1925, vol. 47, p. 338.

    Article  CAS  Google Scholar 

  38. Smith, B.D. and Srivastava, R., Thermodynamic Data for Pure Compounds: Hydrocarbons and Ketones, Amsterdam: Elsevier, 1986.

    Google Scholar 

  39. Reid, R.C., Prausnitz, J.M., and Poling, B.E., The Properties of Gases and Liquids, New York: McGraw-Hill, 1987.

    Google Scholar 

  40. Wilke, C.R., A viscosity equation for gas mixtures, J. Chem. Phys., 1950, vol. 18, no. 4, p. 517.

    Article  CAS  Google Scholar 

  41. Wassiljewa, A., Heat conduction in gaseous mixtures, Phys. Z., 1904, vol. 5, p. 737.

    CAS  Google Scholar 

  42. Grunberg, L. and Nissan, A.H., Mixture law for viscosity, Nature, 1949, vol. 164, p. 799.

    Article  CAS  Google Scholar 

  43. Li, C.C., Thermal conductivity of liquid mixtures, AIChE J., 1976, vol. 22, no. 5, p. 927.

    Article  CAS  Google Scholar 

  44. Faúndez, C.A. and Valderrama, J.O., Activity coefficient models to describe vapor-liquid equilibrium in ternary hydro-alcoholic solutions, Chin. J. Chem. Eng., 2009, vol. 17, no. 2, p. 259.

    Article  Google Scholar 

Download references

Funding

The authors thank CAPES (Coordination for the Improvement of Higher Level Personnel), PETROBRAS (Petroleo Brasileiro S.A.) and UFSC (Federal University of Santa Catarina) for the financial and technological support offered.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Battisti.

APPENDIX A

APPENDIX A

The physical parameters used in the modelling were obtained from the references described in Tables A1 and A2. Table A1 refers to the data of the pure components, and several of the properties described therein are temperature dependent functions. In terms of modelling, the values of any desired property were obtained by interpolating the data provided in the references.

Table A1.   Physical properties of the pure components in the liquid and vapor phases

In Table A1, the parameters of the collision integral, as well as the critical parameters of the pure components were used for the calculation of the binary diffusion coefficient, using the modified Wilke and Lee correlation [40]. Table A2 describes the methods used to obtain properties of the ethanol-water solution, from pure data. In the case of the properties present in Table A1 and not listed in Table A2, a linear mixing rule was assumed, given by the weighted average (in terms of molar fraction) of the information of the pure components.

Table A2.   Methods of calculating properties of the ethanol-water mixture

Finally, the parameters of the activity coefficient model (Wilson) were obtained from the model described by Faúndez and Valderrama [44].

NOTATION

A

interfacial area (m2)

D

difusivity (m2/s)

d

diameter (m)

E

energy balance function (J/s)

E

quadratic approximation error

e

point energy flux (J/m2 s)

ε

energy transfer rate (J/s)

F

flow rate

g

gravity acceleration (9.81 m/s2)

H

enthalpy (J/kg)

h

heat transfer coefficient (J/m2 K)

h*

dimensionless heat transfer coefficient

K

equilibrium ratio

k

mass transfer coefficient (kg/m2 s)

k

thermal conductivity (W/m K)

k Boltz

Boltzmann constant (1.3806 × 10–23 m2 kg/s2 K)

L

liquid flow rate (kg/s)

M

mass balance function

N

number of elements

N

transfer flux (kg/m2 s)

\(\mathbb{N}_{{i,j}}^{{\text{V}}},\,\,\mathbb{N}_{{i,j}}^{{\text{L}}}\)

transfer rates (kg/s)

P

pressure (kPa)

p

adjustable parameter

Pc

critical pressure (bar)

Pr

Prandtl number

Q

energy added or removed (kW)

R

rate relation functions

Re

Reynolds number

Rec

critical Reynolds number

S

summation functions

Sc

Schmidt number

Sh

Sherwood number

T

temperature (K)

T c

critical temperature (K)

u

velocity (m2/s)

V

vapor flow rate (kg/s)

W

internal perimeter (m)

w

mass flow (kg/s)

x

mass fraction in the liquid phase

x

spatial coordinate in the radial direction (m)

y

mass fraction in the vapor phase

Zc

critical compressibility factor

ϕ

fugacity coefficient

variation difference

α

weighting coefficient

γ

activity coefficient

δ

film thickness (m)

δpi

Kronecker delta

ε

maximum attraction energy

μ

fuid viscosity (Pa s)

ρ

fuid density (kg/m3)

σ

collision diameter (angstroms)

ω

acentric factor

SUBSCRIPTS AND SUPERSCRIPTS

C

composition

c

total number of components

D

top flow rate

et

ethanol

i

component i

I

interface

j

staje

k

component k

L

liquid phase

mod

modified

P

thermosyphon power

T

top temperature

t

total

transf

transference

V

vapor phase

vap

vaporization

w

wall

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claumann, C.A., Battisti, R., Peruzzo, T. et al. Nonequilibrium Stage Based Modeling of a Falling Film Distillation Unit. Theor Found Chem Eng 54, 1156–1172 (2020). https://doi.org/10.1134/S0040579520060147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520060147

Keywords:

Navigation