Skip to main content
Log in

Kinetics of Chemical Precipitation: General Evolutionary Patterns in Different Models

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The trends, general patterns, and stages of evolutionary processes, in particular, the evolution of solid matter in crystallization processes, have been considered. The role of the logistic (sigmoid) function in the description of the kinetics of evolutionary processes has been shown. Mathematical modeling of the chemical precipitation of slightly soluble salts has been performed taking into account the rates of crystal growth and nucleation. It has been found that different models lead to the S-shaped dependence of the same form, which adequately describes the formation of crystalline precipitates of slightly soluble calcium salts from supersaturated aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Mullin, J.W., Crystallization, Oxford: Butterworth-Heinemann, 2001.

    Google Scholar 

  2. Matusevich, L.N., Kristallizatsiya iz rastvorov v khimicheskoi promyshlennosti (Crystallization from Solutions in the Chemical Industry), Moscow: Khimiya, 1968.

  3. Melikhov, I.V., Fiziko-khimicheskaya evolyutsiya tverdogo veshchestva (Physicochemical Evolution of Solid Matter), Moscow: BINOM. Laboratoriya znanii, 2009.

  4. Melikhov, I.V. and Tret’yakov, Yu.D., Approaches to the mesokinetic theory of search for the optimal technological route for conversion of a raw material into the desired material, Theor. Found. Chem. Eng., 2013, vol. 47, no. 1, pp. 36–38. https://doi.org/10.1134/S0040579513010041

    Article  CAS  Google Scholar 

  5. Melikhov, I.V., Strategy and tactics in the search for new materials technology, Theor. Found. Chem. Eng., 2011, vol. 45, no. 6, pp. 801–804. https://doi.org/10.1134/S004057951106008X

    Article  CAS  Google Scholar 

  6. Nikolaev, D.A. and Kholpanov, L.P., Zakon evolyutsii: matematicheskaya forma (The Law of Evolution: A Mathematical Form), Moscow: Nauka, 1999.

  7. Korneeva, E.S., Murashova, N.M., and Yurtov, E.V., Analysis of the dynamics of publications in the field of nanomaterials using the Sciencedirect database, Usp. Khim. Khim. Tekhnol., 2012, vol. 26, no. 7, p. 77.

    Google Scholar 

  8. Price, D.J.S., Little Science, Big Science, New York: Columbia Univ. Press, 1963.

    Book  Google Scholar 

  9. Price, D.J.S., Networks of scientific papers, Science, 1965, vol. 149, no. 3683, pp. 510–515. https://doi.org/10.1126/science.149.3683.510

    Article  CAS  PubMed  Google Scholar 

  10. Kapitsa, P.L., Eksperiment. Teoriya. Praktika (Experiment, Theory, and Practice), Moscow: Nauka, 1987.

  11. Lem, S., Summa Technologiae, Kraków: Wydawnictwo Literackie, 1964.

    Google Scholar 

  12. Nalimov, V.V. and Mul’chenko, Z.M., Naukometriya. Izuchenie razvitiya nauki kak informatsionnogo protsessa (Scientometrics: Study of the Development of Science as an Information Process), Moscow: Nauka, 1969.

  13. Muzyakov, S.I., Information environment and conditions of exponential growth of the volume of knowledge in modern society, Vlast’, 2012, vol. 4, p. 42.

    Google Scholar 

  14. Jančić, S.J., Techniques of industrial crystallization: State of the business, Vestn. Slov. Kem. Drus., 1991, vol. 38, no. 3, pp. 459–467.

    Google Scholar 

  15. Rabizadeh, T., Stawski, T.M., Morgan, D.J., Peacock, C.L., and Benning, L.G., The effects of inorganic additives on the nucleation and growth kinetics of calcium sulfate dihydrate crystals, Cryst. Growth Des., 2017, vol. 17, no. 2, pp. 582–589. https://doi.org/10.1021/acs.cgd.6b01441

    Article  CAS  Google Scholar 

  16. Halevy, S., Korin, E., and Gilron, J., Kinetics of gypsum precipitation for designing interstage crystallizers for concentrate in high recovery reverse osmosis, Ind. Eng. Chem. Res., 2013, vol. 52, no. 41, pp. 14647–14657. https://doi.org/10.1021/ie400977p

    Article  CAS  Google Scholar 

  17. Kekin, P.A., Crystallization of calcium carbonate in technological aqueous systems, Cand. Sci. (Eng.) Dissertation, Moscow: Mendeleev Univ. of Chemical Technology of Russia, 2017.

  18. Kolmogorov, A.N., On the statistical theory of crystallization of metals, Izv. Akad. Nauk SSSR,Ser. Mat., 1937, vol. 1, no. 3, pp. 355–359.

    Google Scholar 

  19. Johnson, W.A. and Mehl, R.F., Reaction kinetics in processes of nucleation and growth, Trans. Am. Inst. Min. Metall. Eng., 1939, vol. 135, pp. 416– 442.

    Google Scholar 

  20. Avrami, M., Kinetics of phase change. I General theory, J. Chem. Phys., 1939, vol. 7, no. 12, pp. 1103–1112. https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  21. Avrami, M., Kinetics of phase change. II Transformation–time relations for random distribution of nuclei, J. Chem. Phys., 1940, vol. 8, no. 2, pp. 212–224. https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  22. Avrami, M., Granulation, phase change, and microstructure: Kinetics of phase change. III, J. Chem. Phys., 1941, vol. 9, no. 2, pp. 177–184. https://doi.org/10.1063/1.1750872

    Article  CAS  Google Scholar 

  23. Belen’kii, V.Z., Geometriko-veroyatnostnye modeli kristallizatsii. Fenomenologicheskii podkhod (Geometrical-Probabilistic Models of Crystallization: A Phenomenological Approach), Moscow: Nauka, 1980.

  24. Torner, R.V., Teoreticheskie osnovy pererabotki polimerov (mekhanika protsessov) (Theoretical Fundamentals of Polymer Processing: The Mechanics of Processes), Moscow: Khimiya, 1977.

  25. Roginskii, S.Z. and Todes, O.M., Dependence of the laws of the crystal size distribution, Izv. Akad. Nauk SSSR,Otd. Khim. Nauk, 1942, vol. 3, p. 331.

    Google Scholar 

  26. Deryabina, N.V. and Mishchenko, K.P., On the rate of crystallization of gypsum from aqueous solutions of certain salts, Probl. Kinet. Katal., 1949, vol. 7, p. 122.

    Google Scholar 

  27. Todes, O.M., Seballo, V.A., and Gol’tsiker, A.D., Massovaya kristallizatsiya iz rastvorov (Mass Crystallization from Solutions), Leningrad: Khimiya, 1984.

  28. Ratinov, V.B. and Todes, O.M., On the spontaneous crystallization of dissociated salts, Dokl. Akad. Nauk SSSR, 1960, vol. 132, no. 2, p. 402.

    CAS  Google Scholar 

  29. Melikhov, I.V. and Berliner, L.B., Crystallization of salts from supersaturated solutions: The kinetic regime, Teor. Osn. Khim. Tekhnol., 1979, vol. 13, no. 4, p. 530.

    CAS  Google Scholar 

  30. Berliner, L.B. and Melikhov, I.V., A method for determining the kinetic parameters of batch crystallization, Teor. Osn. Khim. Tekhnol., 1985, vol. 19, no. 1, p. 24.

    CAS  Google Scholar 

  31. Melia, T.P. and Moffitt, W.P., Crystallization from aqueous solution, J. Colloid Sci., 1964, vol. 19, no. 5, pp. 433–447. https://doi.org/10.1016/0095-8522(64)90043-1

    Article  CAS  Google Scholar 

  32. Dirksen, J.A. and Ring, T.A., Fundamentals of crystallization: Kinetic effects on particle size distributions and morphology, Chem. Eng. Sci., 1991, vol. 46, no. 10, pp. 2389–2427. https://doi.org/10.1016/0009-2509(91)80035-W

    Article  CAS  Google Scholar 

  33. Melikhov, I.V. and Bozhevol’nov, V.E., Variability and self-organization in nanosystems, J. Nanopart. Res., 2003, vol. 5, nos. 5–6, pp. 465–472. https://doi.org/10.1023/B:NANO.0000006095.38243.9a

    Article  CAS  Google Scholar 

  34. Linnikov, O.D., Rodina, I.V., Grigorov, I.G., and Polyakov, E.V., Kinetics and mechanism of spontaneous crystallization of potassium nitrate from its supersaturated aqueous solutions, Cryst. Struct. Theory Appl., 2013, vol. 2, no. 1, pp. 16–27. https://doi.org/10.4236/csta.2013.21003

    Article  CAS  Google Scholar 

  35. Matusevich, L.N. and Shabalin, K.N., Intensity of the stirring of a solution and the coarseness of produced crystals, Zh. Prikl. Khim., 1952, vol. 25, p. 1157.

    CAS  Google Scholar 

  36. Melikhov, I.V., Mikheeva, I.V., and Rudin, V.N., The mechanism of crystallization of calcium sulfate hemihydrate under conditions that simulate the production of phosphoric acid by the hemihydrate method, Teor. Osn. Khim. Tekhnol., 1985, vol. 19, no. 6, p. 742.

    CAS  Google Scholar 

  37. von Smoluchowski, M., Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Phys. Chem., 1918, vol. 92U, no. 1, pp. 129–168. https://doi.org/10.1515/zpch-1918-9209

    Article  Google Scholar 

  38. Polak, A.F., Tverdenie monomineral’nykh vyazhushchikh veshchestv (Solidification of Monomineral Binding Materials), Moscow: Stroiizdat, 1966.

  39. Linnikov, O.D., Mechanism of precipitate formation during spontaneous crystallization from supersaturated aqueous solutions, Russ. Chem. Rev., 2014, vol. 83, no. 4, pp. 343– 364. https://doi.org/10.1070/RC2014v083n04ABEH004399

    Article  CAS  Google Scholar 

  40. Geguzin, Ya.E., Zhivoi kristall (A Living Crystal), Moscow: Nauka, 1981.

  41. Crystallization Technology Handbook, Mersmann, A., Ed., New York: Marcel Dekker, 2001, 2nd ed.

    Google Scholar 

  42. Handbook of Industrial Crystallization, Myerson, A.S., Ed., Boston: Butterworth-Heinemann, 2002, 2nd ed.

    Google Scholar 

  43. Linnikov, O.D., Spontaneous crystallization of potassium chloride from aqueous and aqueous-ethanol solutions; Part 3: Model of the crystallization process, Cryst. Res. Technol., 2006, vol. 41, no. 10, pp. 988–996. https://doi.org/10.1002/crat.200610709

    Article  CAS  Google Scholar 

  44. Melikhov, I.V., Mikheev, N.B., and Kulyukhin, S.A., The dynamics of solid substance formation in strongly supersaturated media, Russ. J. Phys. Chem. A, 2010, vol. 84, no. 8, pp. 1284–1287. https://doi.org/10.1134/S0036024410080029

    Article  CAS  Google Scholar 

  45. Christoffersen, J. and Christoffersen, M.R., The kinetics of dissolution of calcium sulphate dihydrate in water, J. Cryst. Growth, 1976, vol. 35, no. 1, pp. 79–88. https://doi.org/10.1016/0022-0248(76)90247-5

    Article  CAS  Google Scholar 

  46. van Oosterhout, G.W. and van Rosmalen, G.M., Analysis of kinetic experiments on growth and dissolution of crystals in suspension, J. Cryst. Growth, 1980, vol. 48, no. 3, pp. 464–468. https://doi.org/10.1016/0022-0248(80)90043-3

    Article  CAS  Google Scholar 

  47. Barone, J.P., Nancollas, G.H., and Yoshikawa, Y., Crystal growth as a function of seed surface area, J. Cryst. Growth, 1983, vol. 63, no. 1, pp. 91–96. https://doi.org/10.1016/0022-0248(83)90432-3

    Article  CAS  Google Scholar 

  48. Verdoes, D., Kashchiev, D., and van Rosmalen, G.M., Determination of nucleation and growth rates from induction times in seeded and unseeded precipitation of calcium carbonate, J. Cryst. Growth, 1992, vol. 118, nos. 3–4, pp. 401–413. https://doi.org/10.1016/0022-0248(92)90089-2

    Article  CAS  Google Scholar 

  49. Schmid, R. and Sapunov, V.N., Non-Formal Kinetics: InSearch for Chemical Reaction Pathways, Monographs in Modern Chemistry, vol. 14, Weinheim: Verlag Chemie, 1982.

    Google Scholar 

Download references

Funding

This study was supported by the state assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of basic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Myasnikov.

Additional information

Translated by A. Uteshinsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myasnikov, S.K., Tikhonov, A.Y. & Kulov, N.N. Kinetics of Chemical Precipitation: General Evolutionary Patterns in Different Models. Theor Found Chem Eng 54, 249–257 (2020). https://doi.org/10.1134/S0040579520020116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520020116

Keywords:

Navigation