Skip to main content
Log in

Analysis of the Thermophysical and Chemical-Technological Properties of Mining and Processing Waste Materials

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Results of a system analysis of volumes and physical, chemical, granulometric, lithological, and thermophysical characteristics of waste materials of apatite–nepheline ores stored in tailing dumps of ore mining and processing works are presented to assess the economic viability of using such materials in energy- and resource-efficient and environmentally sustainable processing systems comprised of conveyor belt roasting machines and ore-thermal furnaces. The results allow the formulation of the principal engineering, technological, economic, and environmental requirements imposed on complicated chemical–power-engineering systems for the processing of apatite–nepheline ore waste materials at mining and processing works and the determination of the variability degree of the characteristics of waste batches from different dumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bobkov, V.I., Borisov, V.V., Dli, M.I., and Meshalkin, V.P., Study of the thermal characteristics of phosphate raw materials in the annealing temperature range, Theor. Found. Chem. Eng., 2017, vol. 51, no. 3, pp. 307–312. https://doi.org/10.1134/S0040579517030022

    Article  CAS  Google Scholar 

  2. Leont’ev, L.I., Physicochemical characteristics of the integrated processing of iron-bearing ores and technogenic wastes, XX Mendeleevskii s"ezd po obshchei i prikladnoi khimii. Tezisy dokladov v 5 tomakh (XX Mendeleev Congress on General and Applied Chemistry: Abstracts of Papers, 5 vols.) (Yekaterinburg, 2016), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2016, p. 92.

  3. Elgharbi, S., Horchani-Naifer, K., and Férid, M., Investigation of the structural and mineralogical changes of Tunisian phosphorite during calcinations, J. Therm. Anal. Calorim., 2015, vol. 119, no. 1, pp. 265–271. https://doi.org/10.1007/s10973-014-4132-5

    Article  CAS  Google Scholar 

  4. Panchenko, S.V. and Shirokikh, T.V., Thermophysical processes in the burden zone of submerged arc furnaces, Theor. Found. Chem. Eng., 2014, vol. 48, no. 1, pp. 77–81. https://doi.org/10.1134/S0040579514010096

    Article  CAS  Google Scholar 

  5. Luis, P. and Van der Bruggen, B., Exergy analysis of energy-intensive production processes: Advancing towards a sustainable chemical industry, J. Chem. Technol. Biotechnol., 2014, vol. 89, no. 9, pp. 1288–1303. https://doi.org/10.1002/jctb.4422

    Article  CAS  Google Scholar 

  6. Bobkov, V.I., Borisov, V.V., Dli, M.I., and Meshalkin, V.P., Intensive technologies for drying a lump material in a dense bed, Theor. Found. Chem. Eng., 2017, vol. 51, no. 1, pp. 70–75. https://doi.org/10.1134/S0040579517010031

    Article  CAS  Google Scholar 

  7. Meshalkin, V.P., Bobkov, V.I., Dli, M.I., and Khodchenko, S.M., Computer-aided modeling of the chemical process of drying of a moving dense multilayer mass of phosphorite pellets, Dokl. Chem., 2017, vol. 475, no. 2, pp. 188–191. https://doi.org/10.1134/S0012500817080031

    Article  CAS  Google Scholar 

  8. Meshalkin, V.P., Bobkov, V.I., Dli, M.I., and Khodchenko, S.M., Computer modeling of the chemical-power engineering process of roasting of a moving multilayer mass of phosphorite pellets, Dokl. Chem., 2017, vol. 477, no. 2, pp. 282–285. https://doi.org/10.1134/S0012500817120023

    Article  CAS  Google Scholar 

  9. Meshalkin, V.P., Bobkov, V.I., Dli, M.I., and Khodchenko, S.M. Optimizing the energy efficiency of the chemical and energy engineering process of drying of a moving dense multilayer mass of phosphorite pellets, Dokl. Chem., 2017, vol. 477, no. 2, pp. 286–289. https://doi.org/10.1134/S0012500817120059

    Article  CAS  Google Scholar 

  10. Butkarev, A.A., Butkarev, A.P., Ashcheulov, V.N., Zhomiruk, P.A., and Lazebnaya, Yu.P., Optimizing the performance of the channel of the exhauster of an OK-108 roasting machine at AO SSGPO for increasing the production of pellets, Stal’, 2015, no. 3, p. 12.

  11. Zainullin, L.A., Druzhinin, G.M., and Butkarev, A.A., Innovative developments at OAO VNIIMT for energy saving and environmental protection in metallurgy, Chern. Metall., 2014, no. 7 (1375), p. 79.

  12. Berman, R., Thermal Conduction in Solids, Oxford Studies in Physics, Oxford: Oxford Univ. Press, 1976.

  13. Reissland, J.A., The Physics of Phonons, New York: Wiley, 1973.

    Google Scholar 

  14. Missenard, A., Conductivite thermique des solides, liquides, gaz et de leurs melanges, Paris: Editions eyrolle, 1965.

  15. Duchkov, A.D. and Sokolova, K.S., Geotermicheskie issledovaniya v Sibiri (Geothermal Studies in Siberia), Novosibirsk: Nauka, 1974.

  16. Levanov, A.V. and Antipenko, E.E., Opredelenie termodinamicheskikh svoistv statisticheskimi metodami. Real’nye gazy. Zhidkosti. Tverdye tela (Determination of Thermodynamic Properties by Statistical Techniques: Imperfect Gases, Liquids, and Solids), Moscow: Mosk. Gos. Univ., 2006.

  17. Melamud, S.G. and Yur’ev, B.P., Oxidation of iron ore at moderate and high temperatures, Steel Transl., 2016, vol. 46, no. 6, pp. 384–389. https://doi.org/10.3103/S0967091216060085

    Article  Google Scholar 

  18. Akberdin, A.A., Kim, A.S., and Sultangaziev, R.B., Experiment planning in the simulation of industrial processes, Steel Transl., 2018, vol. 48, no. 9, pp. 573–577. https://doi.org/10.3103/S0967091218090024

    Article  Google Scholar 

  19. Shvydkii, V.S., Fatkhutdinov, A.R., Devyatykh, E.A., Devyatykh, T.O., and Spirin, N.A., On the mathematical modeling of layered metallurgical furnaces and units: Report II, Izv. Vyssh. Uchebn. Zaved.,Chern. Metall., 2018, vol. 60, no. 1, pp. 19–23.

    Google Scholar 

  20. Bokovikov, B.A., Bragin, V.V., and Shvydkii, V.S., Role of the thermal-inertia zone in conveyer roasting machines, Steel Transl., 2014, vol. 44, no. 8, pp. 595–601. https://doi.org/10.3103/S096709121408004X

    Article  Google Scholar 

  21. Bragin, V.V., Bokovikov, B.A., Naidich, M.I., Gruzdev, A.I., and Shvydkii, V.S., Relation between the productivity and fuel consumption in roasting machines, Steel Transl., 2014, vol. 44, no. 8, pp. 590–594. https://doi.org/10.3103/S0967091214080051

    Article  Google Scholar 

  22. Shvydkii, V.S., Yaroshenko, Yu.G., Spirin, N.A., and Lavrov, V.V., A mathematical model for the roasting of ore–coal pellets in a conveyer machine, Izv. Vyssh. Uchebn. Zaved.,Chern. Metall., 2018, vol. 60, no. 4, p. 329.

    Google Scholar 

  23. Novichikhin, A.V. and Shorokhova, A.V., Systematic processing of iron-ore waste in mining regions, Steel Transl., 2017, vol. 47, no. 7, pp. 456–462. https://doi.org/10.3103/S0967091217070105

    Article  Google Scholar 

  24. Leont’ev, L.I., Grigorovich, K.V., and Kostina, M.V., The development of new metallurgical materials and technologies. Part 1, Steel Transl., 2016, vol. 46, no. 1, pp. 6–15. https://doi.org/10.3103/S096709121601006X

    Article  Google Scholar 

  25. Gurin, I.A., Lavrov, V.V., Spirin, N.A., and Nikitin, A.G., Web technology in automated information and modeling systems for metallurgical processes, Steel Transl., 2017, vol. 47, no. 7, pp. 463–468. https://doi.org/10.3103/S096709121707004X

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-24094MK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bobkov.

Additional information

Translated by O. Lotova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshalkin, V.P., Panchenko, S.V., Bobkov, V.I. et al. Analysis of the Thermophysical and Chemical-Technological Properties of Mining and Processing Waste Materials. Theor Found Chem Eng 54, 157–164 (2020). https://doi.org/10.1134/S0040579520010170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520010170

Keywords:

Navigation