Skip to main content
Log in

Evaluation of Irreversibility and Optimal Design of an Integrated System of Multiflow Heat Exchange

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

An algorithm was proposed to synthesize the structure and distribution of surfaces in a heat-exchange system in the case where the water equivalents and inlet temperatures of hot and cold flows are fixed; the outlet temperatures of cold flows are also given. The algorithm takes into account the possibility of a change in the phase state of contacting flows. The minimum dissipation at a given total heat load corresponds to the minimum total contact area, which closely correlates with the cost of the heat-exchange system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ostrovskii, G.M., Ziyatdinov, N.N., and Emel’yanov, I.I., Synthesis of optimal systems of simple distillation columns with heat recovery, Dokl. Chem., 2015, vol. 461, no. 1, pp. 89–92. https://doi.org/10.1134/S0012500815030052

    Article  CAS  Google Scholar 

  2. Ziyatdinov, N.N., Ostrovskii, G.M., and Emel’yanov, I.I., Designing a heat-exchange system upon the reconstruction and synthesis of optimal systems of distillation columns, Theor. Found. Chem. Eng., 2016, vol. 50, no. 2, pp. 178–187. https://doi.org/10.1134/S0040579516020147

    Article  CAS  Google Scholar 

  3. Kafarov, V.V., Meshalkin, V.P., and Perov, V.L., Matematicheskie osnovy avtomatizirovannogo proektirovaniya khimicheskikh proizvodstv (Mathematical Fundamentals of Computer-Aided Design of Chemical Production Processes), Moscow: Khimiya, 1979.

  4. Ziyatdinov, N.N., Emel’yanov, I.I., and Tuen, L.Q., Method for the synthesis of optimum multistage heat exchange network, Theor. Found. Chem. Eng., 2018, vol. 52, no. 6, pp. 943–955. https://doi.org/10.1134/S0040579518060167

    Article  CAS  Google Scholar 

  5. Brodyanskii, V.M., Fratsher, V., and Mikhalek, K., Eksergeticheskii metod i ego prilozheniya (The Exergy Method and Its Applications), Moscow: Energoatomizdat, 1988.

  6. Linnhoff, B., Pinch analysis—A state-of-the-art overview: Techno-economic analysis, Chem. Eng. Res. Des., 1993, vol. 71, no. 5, pp. 503–522.

    CAS  Google Scholar 

  7. Linnhoff, B. and Vredeveld, D.R., Pinch technology has come of age, Chem. Eng. Prog., 1984, vol. 80, no. 7, pp. 33–40.

    CAS  Google Scholar 

  8. Smith, R., Klemeš, J., Tovazhnyanskii, L.L., Kapustenko, P.A., and Ul’ev, L.M., Osnovy integratsii teplovykh protsessov (Fundamentals of Heat Integration Processes), Kharkiv: Nats. Tekh. Univ. KhPI, 2000.

  9. Berry, R.S., Kazakov, V., Sieniutycz, S., Szwast, Z., and Tsirlin, A.M., Thermodynamic Optimization of Finite-Time Processes, Chichester: Wiley, 2000.

    Google Scholar 

  10. Tsirlin, A.M., Mironova, V.A., Amelkin, S.A., and Kazakov, V., Finite-time thermodynamics: Conditions of minimal dissipation for thermodynamic process with given rate, Phys. Rev. E, 1998, vol. 58, no. 1, pp. 215–223. https://doi.org/10.1103/PhysRevE.58.215

    Article  CAS  Google Scholar 

  11. Tsirlin, A.M., Optimal control of irreversible heat and mass transfer processes, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1991, no. 2, p. 171.

  12. Andresen, B. and Gordon, J.M., Optimal heating and cooling strategies for heat exchanger design, J. Appl. Phys., 1992, vol. 71, no. 1, pp. 76–79. https://doi.org/10.1063/1.350649

    Article  Google Scholar 

  13. Salamon, P., Nitzan, A., Andresen, B., and Berry, R.S., Minimum entropy production and the optimization of heat engines, Phys. Rev. A, 1980, vol. 21, no. 6, pp. 2115– 2129. https://doi.org/10.1103/PhysRevA.21.2115

    Article  CAS  Google Scholar 

  14. Tsirlin, A.M., Akhremenkov, A.A., and Grigorevskii, I.N., Minimal irreversibility and optimal distributions of heat transfer surface area and heat load in heat transfer systems, Theor. Found. Chem. Eng., 2008, vol. 42, no. 2, pp. 203–210. https://doi.org/10.1134/S0040579508020139

    Article  CAS  Google Scholar 

  15. Tsirlin, A.M., Ideal heat exchange system, J. Eng. Phys. Thermophys., 2017, vol. 90, no. 5, pp. 1035–1042. https://doi.org/10.1007/s10891-017-1654-2

    Article  Google Scholar 

  16. Kondepudi, D. and Prigogine, I., Modern Thermodynamics: From Heat Engines to Dissipative Structures, New York: Wiley, 1998.

    Google Scholar 

  17. Tsirlin, A.M. and Akhremenkov, A.A., Optimal heat transfer during the change of phase state of a refrigerating medium, Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, pp. 812–818. https://doi.org/10.1134/S0040579518050408

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Tsirlin, A. A. Akhremenkov or S. Yu. Boikov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsirlin, A.M., Akhremenkov, A.A. & Boikov, S.Y. Evaluation of Irreversibility and Optimal Design of an Integrated System of Multiflow Heat Exchange. Theor Found Chem Eng 53, 1001–1011 (2019). https://doi.org/10.1134/S0040579519060137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519060137

Keywords:

Navigation