Skip to main content
Log in

Modeling Gas Hydrate Formation from Ice Powders Based on Diffusion Theory

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Based on the diffusion theory, a gas–solid reaction model for gas hydrate formation from monosize ice powders was constructed and an effective diffusion coefficient through the gas hydrate shell was obtained by solving the diffusion equation. This model can be applied for a gas–solid reaction process with gas pressure drop during hydrate formation. Two cases termed as M1 and M2 were discussed and compared with each other. In the M1 case, the spherical particle geometry was assumed to be squeezed by adjacent particles. In the M2 case, the effect of adjacent particles on the object particle geometry was neglected. The results showed that the gas effective diffusion coefficient was a critical parameter for accurately simulating the reaction process, and it was found to vary during hydrate formation. In this model, the time-dependent gas effective diffusion coefficient was calculated by means of the measured gas pressure during hydrate formation, and the degrees of hydrate formation were obtained. In addition, the geometrical changes of the hydrate shell and ice powders were obtained during hydrate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ribeiro, C.P. and Lage, P.L.C., Modelling of hydrate formation kinetics: State-of-the-art and future directions, Chem. Eng. Sci., 2008, vol. 63, no. 8, p. 2007.

    Article  CAS  Google Scholar 

  2. Gudmundsson, J.S., Andersson, V., Levik, O.I., and Mork, M., Hydrate technology for capturing stranded gas, Gas Hydrates: Challenges for the Future, Holder, G.D. and Bishnoi, P.R., Eds., Annals of the New York Academy of Sciences, vol. 912, New York: New York Academy of Sciences, 2000, p. 403.

  3. Vorotyntsev, V.M., Malyshev, V.M., Taraburov, P.G., and Mochalov, G.M., Separation of gas mixture by the continuous gas hydrate crystallization, Theor. Found. Chem. Eng., 2001, vol. 35, no. 6, p. 513.

    Article  CAS  Google Scholar 

  4. Vorotyntsev, V.M. and Malyshev, V.M., Gas hydrates: Nanosized phases in the separation and purification of substances by crystallization, Russ. Chem. Rev., 2011, vol. 80, no. 10, p. 971.

    Article  CAS  Google Scholar 

  5. Sloan, E.D., Clathrate Hydrates of Natural Gases, New York: Marcel Dekker, 1998, 2nd ed.

    Google Scholar 

  6. Takeya, S., Hondoh, T., and Uchida, T., In situ observation of CO2 hydrate by X-ray diffraction, Gas Hydrates: Challenges for the Future, Holder, G.D. and Bishnoi, P.R., Eds., Annals of the New York Academy of Sciences, vol. 912, New York: New York Academy of Sciences, 2000, p. 973.

  7. Henning, R.W., Schultz, A.J., Thieu, V., and Halpern, Y., Neutron diffraction studies of CO2 clathrate hydrate: Formation from deuterated ice, J. Phys. Chem. A., 2000, vol. 104, no. 21, p. 5066.

    Article  CAS  Google Scholar 

  8. Hwang, M.J., Wright, D.A., Kapur, A., and Holder, G.D., An experimental study of crystallization and crystal growth of methane hydrates from melting ice, J. Inclusion Phenom. Mol. Recognit. Chem., 1990, vol. 8, nos. 1–2, p. 103.

    Article  CAS  Google Scholar 

  9. Kuhs, W.F., Klapproth, A., Gotthardt, F., Techmer, K., and Heinrichs, T., The formation of meso- and macroporous gas hydrates, Geophys. Res. Lett., 2000, vol. 27, no. 18, p. 2929.

    Article  CAS  Google Scholar 

  10. Kuhs, W.F., Staykova, D.K., and Salamatin, A.N., Formation of methane hydrate from polydisperse ice powders, J. Phys. Chem. B., 2006, vol. 110, no. 26, p. 13283.

    Article  CAS  PubMed  Google Scholar 

  11. Klapproth, A., Goreshnik, E., Staykova, D., Klein, H., and Kuhs, W.F., Structural studies of gas hydrates, Can. J. Phys., 2003, vol. 81, nos. 1–2, p. 503.

    Article  CAS  Google Scholar 

  12. Staykova, D.K., Hansen, T., Salamatin, A.N., and Kuhs, W.F., Kinetic diffraction experiments on the formation of porous gas hydrates, Proc. 4th Int. Conf. on Gas Hydrates, Yokohama, Japan, 2002, p. 537.

  13. Staykova, D.K., Kuhs, W.F., Salamatin, A.N., and Hansen, T., Formation of porous gas hydrates from ice powders: Diffraction experiments and multistage model, J. Phys. Chem. B., 2003, vol. 107, no. 37, p. 10299.

    Article  CAS  Google Scholar 

  14. Halpern, Y., Thieu, V., Henning, R.W., Wang, X.P., and Schultz, A.J., Time-resolved in situ neutron diffraction studies of gas hydrate: Transformation of structure II (sII) to structure I (sI), J. Am. Chem. Soc., 2001, vol. 123, no. 51, p. 12826.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, X.P., Schultz, A.J., and Halpern, Y., Kinetics of methane hydrate formation from polycrystalline deuterated ice, J. Phys. Chem. A., 2002, vol. 106, no. 32, p. 7304.

    Article  CAS  Google Scholar 

  16. Homma, S., Ogata, S., Koga, J., and Matsumoto, S., Gas-solid reaction model for a shrinking spherical particle with unreacted shrinking core, Chem. Eng. Sci., 2005, vol. 60, no. 18, p. 4971.

    Article  CAS  Google Scholar 

  17. Salamatin, A.N. and Kuhs, W.F., Formation of porous gas hydrates, Proc. 4th Int. Conf. on Gas Hydrates, Yokohama, Japan, 2002, p. 766.

  18. Arzt, E., The influence of an increasing particle coordination on the densification of spherical powders, Acta Metall., 1982, vol. 30, no. 10, p. 1883.

    Article  CAS  Google Scholar 

  19. Crank, J., The Mathematics of Diffusion, Oxford: Clarendon, 1975, 2nd ed.

    Google Scholar 

  20. Vlasov, V.A., Phenomenological diffusion theory of formation of gas hydrate from ice powder, Theor. Found. Chem. Eng., 2012, vol. 46, no. 6, p. 576.

    Article  CAS  Google Scholar 

  21. Lee, H., Seo, Y., Seo, Y.T., Moudrakovski, I.L., and Ripmeester, J.A., Recovering methane from solid methane hydrate with carbon dioxide, Angew. Chem., Int. Ed., 2003, vol. 42, no. 41, p. 5048.

    Article  CAS  Google Scholar 

  22. Vlasov, V.A., Formation and dissociation of gas hydrate in terms of chemical kinetics, React. Kinet., Mech. Catal., 2013, vol. 110, no. 1, p. 5.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study has been supported by the National Key R&D Program of China (grant nos. 2017YFC0307305 and 2016YFC0304001) and the National Natural Science Foundation of China (grant nos. 51676024 and 51876029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Li.

Additional information

The article is published in the original.

APPENDIX

APPENDIX

The rate of the forward reaction of gas hydrate formation can be represented as

$${{R}_{{{\text{form}}}}} = \;{{k}_{{\text{R}}}}{\rho }_{{{\text{mi}}}}^{n}{{\left. {c\left( {r,t} \right)} \right|}_{{r = {{R}_{{\text{i}}}}\left( t \right)}}},\,\,\,t > 0.$$
((A.1))

In the state of the thermodynamic equilibrium of the ice–gas hydrate–gas system, the following condition is satisfied:

$${{R}_{{{\text{form}}}}} = \;{{R}_{{{\text{dis}}}}} = \;{{k}_{{\text{R}}}}{\rho }_{{{\text{mi}}}}^{n}\frac{{{{p}_{{{\text{eq}}}}}}}{{{{Z}_{{{\text{eq}}}}}RT}}.$$
((A.2))

The rate of decrease in the amount of the gas on the surface is

$$\begin{gathered} {{r}_{{\text{g}}}} = {{R}_{{{\text{form}}}}} - {{R}_{{{\text{dis}}}}} \\ = \,\,\,{{k}_{{\text{R}}}}{\rho }_{{{\text{mi}}}}^{n}\left( {{{{\left. {c\left( {r,t} \right)} \right|}}_{{r = {{R}_{{\text{i}}}}\left( t \right)}}} - \frac{{{{p}_{{{\text{eq}}}}}}}{{{{Z}_{{{\text{eq}}}}}RT}}} \right)\; ,\,\,\,t > 0. \\ \end{gathered} $$
((A.3))

For the diffused gas was fully involved in the generating reaction, the internal boundary condition is

$$\begin{gathered} {{D}_{{{\text{eff}}}}}{{\left. {\frac{{\partial c\left( {r,t} \right)}}{{\partial r}}} \right|}_{{r = {{R}_{{\text{i}}}}\left( t \right)}}} = {{r}_{{\text{g}}}} \\ = \,\,{{k}_{{\text{R}}}}{\rho }_{{{\text{mi}}}}^{n}\left( {{{{\left. {c\left( {r,t} \right)} \right|}}_{{r = {{R}_{{\text{i}}}}\left( t \right)}}} - \frac{{{{p}_{{{\text{eq}}}}}}}{{{{Z}_{{{\text{eq}}}}}RT}}} \right),\,\,\,t > 0. \\ \end{gathered} $$
((A.4))

As it has been assumed, the diffusion is pseudo-steady where it is not in the external boundary; obviously, the following equation is reasonable:

$$\begin{gathered} \frac{{\partial c\left( {r,t} \right)}}{{\partial t}} = \;{{D}_{{{\text{eff}}}}}\left( {\frac{{{{\partial }^{2}}c\left( {r,t} \right)}}{{\partial {{r}^{2}}}} + \;\frac{2}{r}\frac{{\partial c\left( {r,t} \right)}}{{\partial r}}} \right) = 0,~\,\, \\ {{R}_{{\text{i}}}}\left( t \right)~\, \leqslant r~ < ~{{R}_{{\text{h}}}}\left( t \right). \\ \end{gathered} $$
((A.5))

The solution of the above equation is \(c\left( {r,t} \right) = \frac{{a\left( t \right)}}{r} + b\left( t \right)\).

Due to the thermodynamic conditions of the external boundary are varied, we have

$$\frac{{\partial c\left( {r,t} \right)}}{{\partial t}} = \frac{{\partial \left( {\frac{p}{{ZRT}}} \right)}}{{\partial t}}~,\,\,\,~r = ~{{R}_{{\text{h}}}}\left( t \right).$$

The improved solution is

$$c\left( {r,t} \right) = \frac{{a\left( t \right)}}{r} + B\left( t \right){{r}^{2}} + b\left( t \right),~\,\,\,r = ~{{R}_{{\text{h}}}}\left( t \right),$$
$$\begin{gathered} {{\left. {B\left( t \right)} \right|}_{{r = {{R}_{{\text{h}}}}\left( t \right)}}} = \frac{1}{{6{{D}_{{{\text{eff}}}}}}}\frac{{\partial \left( {\frac{p}{{ZRT}}} \right)}}{{\partial t}}, \\ {\text{when\;}}p,\,\,T = {\text{const}}, {{\left. {B\left( t \right)} \right|}_{{r = {{R}_{{\text{h}}}}\left( t \right)}}} = 0. \\ \end{gathered} $$
((A.6))

For \(B\left( t \right) = 0,~\,\,\,{{R}_{{\text{i}}}}\left( t \right)~\, \leqslant r~ < ~{{R}_{{\text{h}}}}\left( t \right)\), we will obtain a unified solution.

In the external boundary condition,

$$\begin{gathered} {{\left. {c\left( {r,t} \right)} \right|}_{{r = {{R}_{{\text{h}}}}\left( t \right)}}} = \frac{p}{{Z\left( {p,T} \right)RT}} \\ = \,\,~\frac{{a\left( t \right)}}{{{{R}_{{\text{h}}}}}} + B\left( t \right)R_{{\text{h}}}^{2} + b\left( t \right),\,\,\,t > 0. \\ \end{gathered} $$
((A.7))

In the internal boundary condition,

$${{D}_{{{\text{eff}}}}}\left( { - \frac{{a\left( t \right)}}{{R_{{\text{i}}}^{2}}}} \right) = ~\,{{k}_{{\text{R}}}}{\rho }_{{{\text{mi}}}}^{n}\left( {\frac{{a\left( t \right)}}{{{{R}_{{\text{i}}}}}} + b\left( t \right) - \;\frac{{{{p}_{{{\text{eq}}}}}}}{{{{Z}_{{{\text{eq}}}}}RT}}} \right).$$
((A.8))

By (A.7) and (A.8), we will obtain \(a\left( t \right)\), \(b\left( t \right)\). At the external boundary of hydrate shell, B(t) is obtained by the real gas state equation. At internal boundary of the hydrate shell, while the discrete time is sufficiently small [17], the process is regarded as pseudo-steady state, and B(t) is equal to 0. Then, we obtain \({{\left. {B\left( t \right)} \right|}_{{r = {{R}_{{\text{h}}}}\left( t \right)}}} = \frac{1}{{6{{D}_{{{\text{eff}}}}}}}\frac{{\partial \left( {\frac{p}{{ZRT}}} \right)}}{{\partial t}},\) when \(p,T = {\text{const}},\)

$${{\left. {B\left( t \right)} \right|}_{{r = {{R}_{{\text{h}}}}\left( t \right)}}} = \;0,\,\,\,{{\left. {B\left( t \right)} \right|}_{{r = {{R}_{{\text{i}}}}\left( t \right)}}} = \;0.$$
((A.9))
$$\begin{gathered} a\left( t \right) \\ = - \frac{{\frac{p}{{ZRT}}\; - \;\frac{{{{p}_{{{\text{eq}}}}}}}{{{{Z}_{{{\text{eq}}}}}RT\;}}{\kern 1pt} \; - {\kern 1pt} \;\frac{1}{{6{{D}_{{{\text{eff}}}}}}}\frac{{\partial \left( {\frac{p}{{ZRT}}} \right)}}{{\partial t}}{{R}_{{\text{h}}}}{{{\left( t \right)}}^{2}}}}{{\frac{{{{D}_{{{\text{eff}}}}}}}{{{{k}_{{\text{R}}}}{\rho }_{{{\text{mi}}}}^{n}{{R}_{{\text{i}}}}{{{\left( t \right)}}^{2}}}} + \;\left( {\frac{1}{{{{R}_{{\text{i}}}}\left( t \right)}} - \;\frac{1}{{{{R}_{{\text{h}}}}\left( t \right)}}} \right)}}, \\ \end{gathered} $$
((A.10))
$$b\left( t \right) = \frac{p}{{ZRT}} - \frac{{a\left( t \right)}}{{{{R}_{{\text{h}}}}\left( t \right)}}\; - \frac{1}{{6{{D}_{{{\text{eff}}}}}}}\frac{{\partial \left( {\frac{p}{{ZRT}}} \right)}}{{\partial t}}{{R}_{{\text{h}}}}{{\left( t \right)}^{2}}.$$
((A.11))

The molar flux through the gas hydrate layer is

$$\begin{gathered} Q = \frac{{4{\pi }{{D}_{{{\text{eff}}}}}\left( {\frac{p}{{ZRT}}\; - {{{\left. {c\left( {r,t} \right)} \right|}}_{{r = {{R}_{{\text{i}}}}\left( t \right)}}}} \right)}}{{\frac{1}{{{{R}_{{\text{i}}}}\left( t \right)}} - \;\frac{1}{{{{R}_{{\text{h}}}}\left( t \right)}}}} \\ = \,\,{{k}_{{\text{R}}}}{\rho }_{{{\text{mi}}}}^{n}\left( {{{{\left. {c\left( {r,t} \right)} \right|}}_{{r = {{R}_{{\text{i}}}}\left( t \right)}}} - \;\frac{{{{p}_{{{\text{eq}}}}}}}{{{{Z}_{{{\text{eq}}}}}RT}}} \right) = {{r}_{{\text{g}}}}. \\ \end{gathered} $$
((A.12))

Because of molar conservation, we have the following formula:

$$ - \frac{{d\left( {{{{\rho }}_{{{\text{mi}}}}}\frac{4}{3}{\pi }{{R}_{{\text{i}}}}{{{\left( t \right)}}^{3}}} \right)}}{{dt}} = n{{r}_{{\text{g}}}}\;.$$
((A.13))

According to (A.12), we have

$${{\left. {c\left( {r,t} \right)} \right|}_{{r = {{R}_{{\text{i}}}}\left( t \right)}}} = \frac{{{{r}_{{\text{g}}}}}}{{{{k}_{{\text{R}}}}{\rho }_{{{\text{mi}}}}^{n}}} + \frac{{{{p}_{{{\text{eq}}}}}}}{{{{Z}_{{{\text{eq}}}}}RT}}.$$
((A.14))

Then, we obtain

$$Q = \;{{r}_{{\text{g}}}} = \frac{{\frac{p}{{ZRT}} - \frac{{{{p}_{{{\text{eq}}}}}}}{{{{Z}_{{{\text{eq}}}}}RT\;}}}}{{\;\frac{{\frac{1}{{{{R}_{{\text{i}}}}\left( t \right)}} - \frac{1}{{{{R}_{{\text{h}}}}\left( t \right)}}}}{{4{\pi }{{D}_{{{\text{eff}}}}}}} + \frac{1}{{{{k}_{{\text{R}}}}{\rho }_{{{\text{mi}}}}^{n}}}}}.$$
((A.15))

The number of ice particles in the sample is as follows:

$$N = \;\frac{{{{m}_{{\text{i}}}}}}{{{{{\rho }}_{{\text{i}}}}\frac{4}{3}{\pi }R_{0}^{3}}}.$$
((A.16))

The variation in the molar flow rate of the gas around the individual hydrate particle is approximately equal to the molar flux through the hydrate layer:

$$\begin{gathered} Q = - \frac{{\partial \left( {\frac{{p\left( t \right)}}{{ZRT}}} \right)}}{{\partial t}}\left( {\frac{V}{N} - \frac{4}{3}{\pi }{{R}_{{\text{h}}}}{{{\left( t \right)}}^{3}}} \right) \\ \approx \,\, - \frac{{{{{\left. {\Delta c} \right|}}_{{r = {{R}_{{\text{h}}}}\left( t \right)}}}}}{{\Delta t}}\left( {\frac{V}{N} - \frac{4}{3}{\pi }{{R}_{{\text{h}}}}{{{\left( t \right)}}^{3}}} \right). \\ \end{gathered} $$
((A.17))

According to molar conservation, we have

$$\begin{gathered} \frac{{4n{{{\rho }}_{{{\text{mh}}}}}}}{3}{\pi }\left( {{{R}_{{\text{h}}}}{{{\left( t \right)}}^{3}} - \;{{R}_{{\text{i}}}}{{{\left( t \right)}}^{3}}} \right) \\ = \,\,\frac{{4{{{\rho }}_{{{\text{mi}}}}}}}{3}{\pi }\left( {{{R}_{{\text{i}}}}{{{\left( t \right)}}^{3}} - \;R_{0}^{3}} \right). \\ \end{gathered} $$
((A.18))

Combining formulas (A.13) and (A.15), we have formula (8). According to (A.18), we obtain formula (9).

NOTATION

C z

slope of the random density function

c(r, t)

gas concentration in the layer of the gas hydrate, mol/m3

Δc

gas concentration variation, mol/m3

D eff

effective diffusion coefficient of the gas in the gas hydrate, m2/s

k R

reaction rate constant for the formation of gas hydrate on the surface, m3n + 1/moln

m i

total mass of ice, kg

N

number of ice particles in the sample

n

hydrate number

p

gas pressure outside the particle, Pa

p(t)

function of pressure over time, Pa

p eq

pressure of the ice–gas hydrate–gas equilibrium, Pa

Q

molar flux of the gas in the gas hydrate layer, mol/s

R

gas constant, J/(mol s)

R 0

initial radius of the ice particle, m

Rh(t)

outside radius of the gas hydrate layer, m

Rh(t)*

outside radius of the gas hydrate layer, m

Ri(t)

inside radius of the gas hydrate layer, m

R form

rate of the reaction of gas hydrate formation on the surface, mol/s

R dis

rate of the reaction of gas hydrate dissociation on the surface, mol/s

r g

rate of decrease in the amount of gas on the surface during a chemical reaction, mol/s; mol/s

T

temperature, K

t

time, s

Δt

discrete time, s

V

volume, m3

Z

compressibility factor

Z 0

current coordination number

Z eq

compressibility factor for a gas that is under equilibrium conditions

δr

thickness of the hydrate shell at the origin time, m

δt

time for hydrate shell formation, s

η(t)

degree of hydrate formation

ρi

density of ice, kg/m3

ρmi

molar density of ice, mol/m3

ρmh

molar density of the gas hydrate, mol/m3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, Y., Zhang, L. et al. Modeling Gas Hydrate Formation from Ice Powders Based on Diffusion Theory. Theor Found Chem Eng 53, 305–317 (2019). https://doi.org/10.1134/S0040579519020106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519020106

Keywords:

Navigation