Skip to main content
Log in

Phase Equilibrium of Reaction Mixtures for the Production of Epichlorohydrin in the Presence of Solvents

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

An alternative solvent for the production of epichlorohydrin via the epoxidation of allyl chloride with an aqueous hydrogen peroxide solution over a heterogeneous catalyst based on a granulated titanium-containing zeolite has been selected. The problem of replacing toxic methanol with other solvents, which provide, in particular, a simplification of the separation flowsheet, has been solved. Five water–allyl chloride–epichlorohydrin–solvent–heavily boiling fraction five-component systems have been studied (methanol, ethanol, propanol-1, propanol-2, and butanol-1). A thermodynamic topological analysis of phase equilibrium diagrams and an assessment of the possibility and feasibility of separating the mixtures via a method based on a combination of distillation and splitting have been conducted. The most promising solvent for the allyl chloride epoxidation reaction is propanol-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Gao, H., Lu, G., Suo, J., and Li, S., Epoxidation of allyl chloride with hydrogen peroxide catalyzed by titanium silicalite 1, Appl. Catal., A, 1996, vol. 138, p. 27.

  2. Pandey, R.K. and Kumar, R., Eco-friendly synthesis of epichlorohydrin catalyzed by titanium silicate (TS-1) molecular sieve and hydrogen peroxide, Catal. Commun., 2007, vol. 8, p. 379.

    Article  CAS  Google Scholar 

  3. Sulimov, A.V., Danov, S.M., Ovcharova, A.V., Obryvalina, A.N., Telyashev, R.G., Ovcharov, A.A., and Balashov, A.L., Innovative processes for producing epichlorohydrin, Neftegazokhimiya, 2013, no. 1, p. 32.

  4. Danov, S.M., Sulimov, A.V., and Sulimova, A.V., Solvent effect on epoxidation of allyl chloride with hydrogen peroxide on titanium-containing silicalite, Russ. J. Appl. Chem., 2008, vol. 81, no. 11, pp. 1963–1966. https://doi.org/10.1134/S1070427208110189

    Article  CAS  Google Scholar 

  5. Ovcharova, A.V., Development of a technology for epichlorohydrin production, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow: Mendeleev Univ. of Chemical Technology of Russia, 2012.

  6. Ogorodnikov, S.K., Lesteva, T.M., and Kogan, V.B., Azeotropnye smesi. Spravochnik (Azeotropic Mixtures: A Handbook), Leningrad: Khimiya, 1971.

  7. Yang, C., Ma, S., and Yin, X., Organic salt effect of tetramethylammonium bicarbonate on the vapor liquid equilibrium of the methanol water system, J. Chem. Eng. Data, 2011, vol. 56, no. 10, p. 3747.

    Article  CAS  Google Scholar 

  8. Alvarez, V.H., Mattedi, S., Iglesias, M., Gonzalez-Olmos, R., and Resa, J.M., Phase equilibria of binary mixtures containing methyl acetate, water, methanol or ethanol at 101.3 kPa, Phys. Chem. Liq., 2011, vol. 49, p. 52.

    Article  CAS  Google Scholar 

  9. Tsanas, C., Tzani, A., Papadopoulos, A., Detsi, A., and Voutsas, E., Ionic liquids as entrainers for the separation of the ethanol/water system, Fluid Phase Equilib., 2014, vol. 379, p. 148.

    Article  CAS  Google Scholar 

  10. Lai, H.-S., Lin, Y.-F., and Tu, C.-H., Isobaric (vapor + liquid) equilibria for the ternary system of (ethanol + water + 1,3-propanediol) and three constituent binary systems at P = 101.3 kPa, J. Chem. Thermodyn., 2014, vol. 68, p. 13.

    Article  CAS  Google Scholar 

  11. Liu, X., Lei, Z., Wang, T., Qunsheng, L., and Zhu, J., Isobaric vapor liquid equilibrium for the ethanol + water + 2-aminoethanol tetrafluoroborate system at 101.3 kPa, J. Chem. Eng. Data, 2012, vol. 57, no. 12, p. 3532.

    Article  CAS  Google Scholar 

  12. Li, Q., Zhu, W., Wang, H., Ran, X., Fu, Y., and Baohuai, W., Isobaric vapor liquid equilibrium for the ethanol + water + 1,3-dimethylimidazolium dimethylphosphate system at 101.3 kPa, J. Chem. Eng. Data, 2012, vol. 57, no. 3, p. 696.

    Article  CAS  Google Scholar 

  13. Kamihama, N., Matsuda, H., Kurihara, K., Tochigi, K., and Oba, S., Isobaric vapor-liquid equilibria for ethanol + water + ethylene glycol and its constituent three binary systems, J. Chem. Eng. Data, 2012, vol. 57, no. 2, p. 339.

    Article  CAS  Google Scholar 

  14. Lin, Y.-F. and Tu, C.-H., Isobaric vapor-liquid equilibria for the binary and ternary mixtures of 2-propanol, water, and 1,3-propanediol at p = 101.3 kPa: Effect of the 1,3-propanediol addition, Fluid Phase Equilib., 2014, vol. 368, p. 104.

    Article  CAS  Google Scholar 

  15. Li, Q., Zhang, J., Lei, Z., Zhu, J., Wang, B., and Huang, X., Isobaric vapor-liquid equilibrium for (propan-2-ol + water + 1-butyl-3-methylimidazolium tetrafluoroborate), J. Chem. Eng. Data, 2009, vol. 54, no. 9, p. 2785.

    Article  CAS  Google Scholar 

  16. Orchilles, A.V., Miguel, P.J., Vercher, E., and Martinez-Andreu, A., Isobaric vapor-liquid equilibria for 1-propanol + water + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate at 100 kPa, J. Chem. Eng. Data, 2008, vol. 53, p. 2426.

    Article  CAS  Google Scholar 

  17. Lladosa, E., Monton, J.B., Burguet, M.C., and Munoz, R., Phase equilibrium for the esterification reaction of acetic acid + butan-1-ol at 101.3 kPa, J. Chem. Eng. Data, 2008, vol. 53, p. 108.

    Article  CAS  Google Scholar 

  18. Yue, Q., Zhu, J.-W., Wu, Y.-Y., Yuan, X.-Q., and Ma, L., Liquid-liquid equilibria and vapor-liquid equilibria for the binary system of epichlorohydrin and water, Fluid Phase Equilib., 2009, vol. 283, p. 12.

    Article  CAS  Google Scholar 

  19. Ding, X., Liu, H., Li, N., Wang, S., Wang, G., Zhao, X., and Wang, Y., Isobaric vapor-liquid equilibria for the binary and ternary systems of methanol, epichlorohydrin, and glycerol dimethyl ether at 101.3 kPa, J. Chem. Eng. Data, 2015, vol. 60, no. 3, p. 541.

    Article  CAS  Google Scholar 

  20. Wang, R., Lu, Y., Wang, K., and Luo, G., Liquid-liquid equilibria for the system water + 1,3-dichloro-2-propanol + epichlorohydrin from (283.2 to 303.2) K, J. Chem. Eng. Data, 2013, vol. 58, p. 3222.

    Article  CAS  Google Scholar 

  21. Benbouzid, H., Le Floch, S., Stephan, L., Olier, R., and Privat, M., Combined effects of salinity and temperature on the solubility of organic compounds, J. Chem. Thermodyn., 2012, vol. 48, p. 54.

    Article  CAS  Google Scholar 

  22. Naicker, P.K., Sandler, S.I., and Reifsnyder, S., Measurement of the liquid-liquid equilibria for mixtures of water + sodium hydroxide + an alkanol or dimethyl ether using near-infrared spectroscopy, J. Chem. Eng. Data, 2002, vol. 47, p. 191.

    Article  CAS  Google Scholar 

  23. Promyshlennye khlororganicheskie produkty (Industrial Organochlorine Products), Oshin, N.A., Ed., Moscow: Khimiya, 1978.

    Google Scholar 

  24. Iliuta, M.C., Thyrion, F.C., and Landauer, O.M., Effect of calcium chloride on the isobaric vapor-liquid equilibrium of 1-propanol + water, J. Chem. Eng. Data, 1996, vol. 41, p. 402.

    Article  CAS  Google Scholar 

  25. Renon, H. and Prausnitz, J.M., Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J., 1968, vol. 14, no. 1, pp. 135–144. https://doi.org/10.1002/aic.690140124

    Article  CAS  Google Scholar 

  26. Serafimov, L.A., Thermodynamic and topological analysis of liquid-vapor phase equilibrium diagrams and problems of rectification of multicomponent mixtures, Mathematical Methods in Contemporary Chemistry, Kuchanov, S.I., Ed., Amsterdam: Gordon and Breach, 1996, ch. 10, p. 557.

    Google Scholar 

  27. Zharov, V.T. and Serafimov, L.A., Fiziko-khimicheskie osnovy distillyatsii i rektifikatsii (Physicochemical Fundamentals of Distillation Processes), Leningrad: Khimiya, 1975.

  28. Timofeev, V.S., Serafimov, L.A., and Timoshenko, A.V., Printsipy tekhnologii osnovnogo organicheskogo i neftekhimicheskogo sinteza (Principles of the Technology of Basic Organic and Petrochemical Synthesis), Moscow: Vysshaya Shkola, 2010, 3rd ed.

  29. Serafimov, L.A., Tatsievskaya, G.I., and Medvedev, D.V., On the different forms of the azeotropic relationship, Theor. Found. Chem. Eng., 2010, vol. 44, no. 2, pp. 162–168. https://doi.org/10.1134/S0040579510020065

    Article  CAS  Google Scholar 

  30. Serafimov, L.A. and Frolkova, A.V., Determination of vapor-liquid equilibrium diagrams of multicomponent systems, Chem. Pap., 2016, vol. 70, p. 1578.

    Article  CAS  Google Scholar 

  31. Serafimov, L.A., Frolkova, A.V., Medvedev, D.V., and Semin, G.A., Determining the structure of the distillation line diagram from its geometric development for four-component mixtures, Theor. Found. Chem. Eng., 2012, vol. 46, no. 2, pp. 120–127. https://doi.org/10.1134/S0040579512020108

    Article  CAS  Google Scholar 

  32. Frolkova, A.V., Merkul’eva, A.D., and Gaganov, I.S., The state of the art in the synthesis of flow diagrams for the separation of mixtures that segregate into layers, Tonkie Khim. Tekhnol., 2018, vol. 13, no. 3, p. 5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Frolkova.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolkova, A.V., Okhlopkova, E.A. & Frolkova, A.K. Phase Equilibrium of Reaction Mixtures for the Production of Epichlorohydrin in the Presence of Solvents. Theor Found Chem Eng 53, 185–192 (2019). https://doi.org/10.1134/S0040579519020039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519020039

Keywords:

Navigation