Skip to main content
Log in

Galvanic Corrosion of Steel in Agitated Vessels Used in Fertilizer Industry

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract—

Rates of mass transfer controlled Fe/Cu galvanic corrosion at the wall lining of a cylindrical agitated vessel in different fertilizer electrolytic media were studied. Variables investigated are impeller rotation speed, impeller geometry, electrolyte type, electrolyte concentration, area ratio (anode/cathode), electrolyte temperature, and effect of polyethylene oxide (drag reducing polymer) as a corrosion inhibitor. The corrosion rate was determined by following the change of the concentration of anode metal ions (Fe++) in the electrolyte with time. Scanning electron microscopy (SEM) was carried out for steel sheets subjected to different electrolytes. The results showed that the galvanic corrosion rate increased with increasing the impeller rotation speed, the electrolyte concentration, and temperature. The presence of polyethylene oxide decreased the rate of corrosion by 11–35.21% depending on polymer concentration and operating conditions. Axial flow impeller produces corrosion rates higher than that with the radial flow type under the same operating parameters. Application of the results in the design of agitated vessels handling fertilizer media was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Sheir, L.L. and Jarman, R.A., Corrosion (Metal/Environment Reaction), London: Butterworth-Heinemann, 1998.

    Google Scholar 

  2. Roberge, P.R., Handbook of Corrosion Engineering, New York: McGraw-Hill, 2000.

    Google Scholar 

  3. Fontana, M.G., Corrosion Engineering, New York: McGraw-Hill, 1987.

    Google Scholar 

  4. Al-Ammeri, R.S., Influence of drag reducing additives on power consumption in agitated vessels, Chem. Eng. Commun., 1987, vol. 59, nos. 1–6, p. 1.

    Article  Google Scholar 

  5. Quraishi, A.Q., Mashelkar, R.A., and Ulbrecht, J., Torque suppression in mechanically stirred liquids and multiphase liquid systems, J. Non-Newtonian Fluid Mech., 1976, vol. 1, no. 3, p. 223.

    Article  CAS  Google Scholar 

  6. Mashelkar, R.A., Kale, D.D., and Ulbrecht, J.J., Rotational flow of non-Newtonian fluids—Torque suppression with agitators, Trans. Inst. Chem. Eng., 1975, vol. 53, p. 150.

    CAS  Google Scholar 

  7. Findlay, A. and Kitchener, J.K., Practical Physical Chemistry, London: Longman, 1965.

    Google Scholar 

  8. Little, R., Smidt, S., Huang, P., Romans, J., Dedrick, J., and Matuszko, J.S., Improved drag reduction by control of polymer particle size, Ind. Eng. Chem. Res., 1991, vol. 30, no. 2, p. 403.

    Article  CAS  Google Scholar 

  9. Mahato, B.K., Voora, S.K., and Shemilt, L.W., Steel pipe corrosion under flow condition—An isothermal correlation for a mass transfer model, Corros. Sci. 1968, vol. 8, no. 3 p. 173.

    Article  CAS  Google Scholar 

  10. Foroulis, Z.A., The influence of velocity and dissolved oxygen on the initial corrosion behavior of iron in high purity water, Corrosion, 1979, vol. 3, no. 8, p. 340.

    Article  Google Scholar 

  11. Nesic, S. and Postlethwaite, J., Hydrodynamics of disturbed flow and erosion–corrosion. Part I—Single-phase flow study, Can. J. Chem. Eng., 1991, vol. 69, no. 3, p. 698.

    Article  CAS  Google Scholar 

  12. Shreir, L.L., Jarman, R.A., and Burstein, G.T., Corrosion: Metal/Environment Reactions, London: Butterworth-Heinemann, 2000, vol. 1, 3rd ed.

    Google Scholar 

  13. Dkhireche, N., Dahami, A., Rochdi, A., Hmimou, J., Touir, R., Ebn Touhami, M., El Bakri, M., El Hallaoui, A., Anouar, A., and Takenouti, H., Corrosion and scale inhibition of low carbon steel in cooling water system by 2-propargyl-5-o-hydroxyphenyltetrazole, J. Ind. Eng. Chem., 2013, vol. 19, no. 6, p. 1996.

    Article  CAS  Google Scholar 

  14. Quevedo, M.C., and Genesca, J., Influence of turbulent flow on the corrosion of Al–Zn–Mg galvanic anode in artificial seawater media, J. Mater. Corros., 2009, vol. 60, no. 6, p. 424.

    Article  CAS  Google Scholar 

  15. Montañés, M.T., Tovar, R.S., García-Antón, J., and Herranz, V.P., The influence of Reynolds number on the galvanic corrosion of the copper/AISI 304 pair in aqueous LiBr solutions, Corros. Sci., 2009, vol. 51, no. 11, p. 2733.

    Article  CAS  Google Scholar 

  16. Dawnson, A. and Trass, O., Mass transfer at rough surfaces, Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 1317–1336.

    Article  Google Scholar 

  17. Berger, K.F. and Hau, F.B., Local mass transfer distribution on surfaces roughened with small square ribs, Int. J. Heat Mass Transfer, 1979, vol. 22, no. 12, p. 1645.

    Article  Google Scholar 

  18. Hasan, B.O., Galvanic corrosion of carbon steel–brass couple in chloride containing water and the effect of different parameters, J. Pet. Sci. Eng., 2014, vol. 124, p. 137.

    Article  CAS  Google Scholar 

  19. Slaiman, Q.J.M. and Hasan, B.O., Study on corrosion rate of carbon steel pipe under turbulent flow conditions, Can. J. Chem. Eng., 2012, vol. 88, no. 6, p. 1114.

    Article  CAS  Google Scholar 

  20. Kalinnikov, V.T., Makarov, D.V., Makarov, V.N., Oxidation sequence of sulfide minerals in operating and out-of-service mine waste storage, Theor. Found. Chem. Eng., 2001, vol. 35, no. 1, p. 63.

    Article  CAS  Google Scholar 

  21. Heitz, E., Mechanistically based prevention strategies of flow-induced corrosion, Electrochim. Acta, 1996, vol. 41, no. 4, p. 503.

    Article  CAS  Google Scholar 

  22. Montañés, M.T., Sánchez-Tovar, R., García-Antó, J., and Pérez-Herranz, V., Effects of flow variations on the galvanic corrosion of the copper/AISI 304 stainless steel pair in lithium bromide using a zero-resistance ammeter, Int. J. Electrochem. Sci., 2012, vol. 7, no. 1, p. 747.

    Google Scholar 

  23. Shadley, J.R., Shirazi, S.A., Dayalan, E., Ismail, M., and Rybicki, E.F., Erosion-corrosion of a carbon steel elbow in a carbon dioxide environment, Corrosion, 1996, vol. 52, no. 9, p. 714.

    Article  CAS  Google Scholar 

  24. Al Hossani, H.I., Saber, T.M.H., Mohammed, R.A., and Shams El Din, A.M., Galvanic corrosion of copper-base alloys in contact with molybdenum-containing stainless steels in Arabian Gulf water, Desalination, 1997, vol. 109, no. 1, p. 25.

    Article  CAS  Google Scholar 

  25. Sánchez-Tovar, R., Montañés, M.T., and Garcia, J., The effect of temperature on the galvanic corrosion of the copper/AISI 304 pair in LiBr solutions under hydrodynamic conditions, Corros. Sci., 2009, vol. 52, no. 3, p. 722.

    Article  CAS  Google Scholar 

  26. Montañes, M.T., Sánchez-Tovar, R., Garcia-Antón, J., Pérez-Herranz, V., The influence of Reynolds number on the galvanic corrosion of the copper/AISI 304 pair in aqueous LiBr solutions, Corros. Sci., 2009, vol. 51, no. 11, p. 2733.

    Article  CAS  Google Scholar 

  27. Zahran, R.R., and Sedahmed, G.H., Galvanic corrosion of zinc in turbulently moving saline water containing drag reducing polymers, Mater. Lett., 1997, vol. 31, no. 1, p. 29.

    Article  CAS  Google Scholar 

  28. Perry, R.H. and Green, D.W., Perry’s Chemical Engineers’ Handbook, New York: McGraw-Hill, 2008, 8th ed.

    Google Scholar 

  29. Friend, J.A.N. and Denett, J., VIII.—The rate of solution of iron in dilute sulphuric acid both when stationary and under rotation, J. Chem. Soc. Trans., 1922, vol. 121 p. 41.

    Article  CAS  Google Scholar 

  30. Welty, J.R., Wicks, C.E., Wilson, R.E., and Rorrer, G.L., Fundamentals of Momentum, Heat, and Mass Transfer, New York: Wiley, 2008.

    Google Scholar 

  31. Incropera, F.P. and Dewitt, D.P., Fundamentals of Heat and Mass Transfer, New York: Wiley, 1990, 3rd ed.

    Google Scholar 

  32. Edward, J.T., Molecular volumes and the Stokes–Einstein equation, J. Chem. Educ., 1970, vol. 47, no. 4, p. 261.

    Article  CAS  Google Scholar 

  33. Garfias-Mesias, L.F. and Sykes, J.M., Metastable pitting in 25 Cr duplex stainless steel, Corros. Sci., 1999, vol. 41, no. 5, p. 959.

    Article  CAS  Google Scholar 

  34. Guo, R. and Ives, M.B., Pitting susceptibility of stainless steels in bromide solutions at elevated temperatures, Corrosion, 1990, vol. 46, no. 2, p. 125.

    Article  CAS  Google Scholar 

  35. Yaro, A.S., Hameed, K.W., and Khadom, A.A., Study for prevention of steel corrosion by sacrificial anode cathodic protection, Theor. Found. Chem. Eng., 2013, vol. 47, no. 3, p. 266.

    Article  CAS  Google Scholar 

  36. Askew, W.S. and Beckmann, R.B., Heat and mass transfer in an agitated vessel, Ind. Eng. Chem. Process Des. Dev., 1965, vol. 4, no. 3, p. 311.

    Article  CAS  Google Scholar 

  37. Sedahmed, G.H., Farag, H.A., Kayar, A.M., and El-Nashar, I.M., Mass transfer at the impellers of agitated vessels in relation to their flow-induced corrosion, Chem. Eng. J., 1998, vol. 71, no. 1, p. 57.

    Article  CAS  Google Scholar 

  38. Sedahmed, G.H., El-Taweel, Y.A., Abdel-Aziz, M.H., and El-Naqeara, H.M., Mass and heat transfer enhancement at the wall of cylindrical agitated vessel by active turbulence promoters, Chem. Eng. Process., 2014, vol. 80, p. 43.

    Article  CAS  Google Scholar 

  39. Mansfeld, F., Liu, G., Xiao, H., Tsai, C.H., and Little, B.J., The corrosion behavior of copper alloys, stainless steels and titanium in seawater, Corros. Sci., 1994, vol. 36, no. 12, p. 2063.

    Article  CAS  Google Scholar 

  40. Alfantazi, A.M., Ahmed, T.M., and Tromans, D., Corrosion behavior of copper alloys in chloride media, Mater. Des., 2009, vol. 30, no. 7, p. 2425.

    Article  CAS  Google Scholar 

  41. Mansfeld, F. and Kenkel, J.V., Galvanic corrosion of Al alloys—III. The effect of area ratio, Corros. Sci., 1975, vol. 15, no. 4, p. 239.

    Article  CAS  Google Scholar 

  42. Tsujino, B. and Miyase, S., The galvanic corrosion of steel in sodium chloride solution, Corrosion, 1982, vol. 38, no. 4, p. 226.

    Article  CAS  Google Scholar 

  43. Sellin, R.H., Hoyt, J.W., and Serivener, O., The effect of drag reducing additives on fluid flow and their industrial applications, J. Hydraul. Res., 1982, vol. 20, no. 3, p. 29.

    Article  Google Scholar 

  44. Sedahmed, G.H. and Griskey, R.G., Mass transfer in drag reducing fluid systems, AIChE J., 1972, vol. 18, no. 1, p. 138.

    Article  Google Scholar 

  45. Popov, V.I., Rheodynamic factor friction drag reduction in the channel and surface, Theor. Found. Chem. Eng., 2015, vol. 49, no. 3, p. 330.

    Article  CAS  Google Scholar 

  46. Abdel-Aziz, M.H., Nirdosh, I., and Sedahmed, G.H., Liquid–solid mass and heat transfer behavior of a concentric tube airlift reactor, Int. J. Heat Mass Transfer, 2013, vol. 58, no. 1, p. 735.

    Article  CAS  Google Scholar 

  47. Amin, N.K., Abdel-Aziz, M.H., and El-Ashtoukhy, E-S.Z., Effect of pulp fiber suspensions on the rate of mass transfer controlled corrosion in pipelines under turbulent flow conditions, Chem. Eng. Res. Des., 2014, vol. 92, no. 11, p. 2333.

    Article  CAS  Google Scholar 

  48. Abdel-Aziz, M.H., Solid-liquid mass transfer in relation to diffusion controlled corrosion at the outer surface of helical coils immersed in agitated vessels, Chem. Eng. Res. Des., 2013, vol. 91, no. 1, p. 43.

    Article  CAS  Google Scholar 

  49. Sedahmed, G.H., The use of drag reducing polymers to combat diffusion controlled corrosion and erosion–corrosion in equipments operating under turbulent flow, Trends Chem. Eng., 2005, vol. 9, p. 65.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Abdel-Aziz.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, B.A., Abdel-Aziz, M.H., El-Ashtoukhy, ES.Z. et al. Galvanic Corrosion of Steel in Agitated Vessels Used in Fertilizer Industry. Theor Found Chem Eng 53, 280–291 (2019). https://doi.org/10.1134/S0040579519020015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519020015

Keywords:

Navigation