Skip to main content
Log in

Hydrodynamics and Heat Transfer during Boiling in a Rotating Gas–Liquid Layer

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Research results regarding hydrodynamics and heat transfer during boiling in a rotating gas–liquid layer are presented. The dependencies for defining the gas content, angular velocity, and height of the liquid layer retained on the heat transfer surface at the expense of the force of inertia of the rotating gas flow are obtained. It is shown that the heat transfer coefficient increases with growth of the angular velocity of the layer and the decrement of its average temperature. The increment of the heat transfer coefficient during boiling in comparison to boiling in the chamber volume was achieved up to three times. Construction of the vortex evaporator (condenser) was elaborated, and the heat transfer coefficient in it constituted 15 000–30 000 W/(m2 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Pranoto, I., Leong, K.C., and Jin, L.W., The role of graphite foam pore structure on saturated pool boiling enhancement, Appl. Therm. Eng., 2012, vol. 42, pp. 163–172. https://doi.org/10.1016/j.applthermaleng.2012.03.001

    Article  CAS  Google Scholar 

  2. Saeidi, D. and Alemrajabi, A.A., Experimental investigation of pool boiling heat transfer and critical heat flux of nanostructured surfaces, Int. J. Heat Mass Transfer, 2013, vol. 60, pp. 440–449. https://doi.org/10.1016/ j.ijheatmasstransfer.2013.01.016

    Article  CAS  Google Scholar 

  3. Sakashita, H., CHF and near-wall boiling behaviors in pool boiling of water on a heating surface coated with nanoparticles, Int. J. Heat Mass Transfer, 2012, vol. 55, nos. 23–24, pp. 7312–7320. https://doi.org/10.1016/ j.ijheatmasstransfer.2012.07.061

    Article  CAS  Google Scholar 

  4. Voinov, N.A., Putintseva, N.A., and Vyrina, E.E., Heat transfer in an air vortex condenser, Khim. Prom-st., 2013, vol. 90, no. 6, p. 291.

    CAS  Google Scholar 

  5. Voinov, N.A., Lednik, S.A., and Zhukova, O.P., Vortical contact stage for heat- and mass-exchange processes, Chem. Pet. Eng., 2014, vol. 49, nos. 9–10, pp. 579–583. https://doi.org/10.1007/s10556-014-9798-9

  6. Voinov, N.A., Lednik, S.A., and Zhukova, O.P., Heat and mass transfer on a vortical contact stage, Khim. Rastit. Syr’ya, 2012, no. 4, p. 209.

  7. Voinov, N.A., Lednik, S.A., Zhukova, O.P., Voronin, S.M., and Voinov, A.N., RF Patent 2466767, 2011.

  8. Voinov, N.A., Zhukova, O.P., and Nikolaev, N.A., Hydrodynamics of the vortex stage with tangential swirlers, Theor. Found. Chem. Eng., 2010, vol. 44, no. 2, pp. 213–219. https://doi.org/10.1134/S0040579510020132

    Article  CAS  Google Scholar 

  9. Voinov, N.A. and Lednik, S.A., Hydrodynamics and mass transfer on a stage with profiled tangential channels, Khim. Prom-st., 2011, vol. 88, no. 5, p. 250.

    CAS  Google Scholar 

  10. Voinov, N.A., Zhukova, O.P., Lednik, S.A., and Nikolaev, N.A., Mass transfer in gas-liquid layer on vortex contact stages, Theor. Found. Chem. Eng., 2013, vol. 47, no. 1, pp. 55–59. https://doi.org/10.1134/ S0040579513010132

    Article  CAS  Google Scholar 

  11. Arnol’d, L.V., Mikhailovskii, G.M., and Seliverstov, V.M., Tekhnicheskaya termodinamika i teploperedacha. Uchebnik dlya vuzov (Engineering Thermodynamics and Heat Transfer: A Textbook for Institutions of Higher Education), Moscow: Vysshaya Shkola, 1979, 2nd ed.

    Google Scholar 

  12. Ainshtein, V.G., Zakharov, M.K., Nosov, G.A., Zakharenko, V.V., Zinovkina, T.V., Taran, A.L., and Kostanyan, A.E., Obshchii kurs protsessov i apparatov khimicheskoi tekhnologii: uchebnik dlya VUZov v dvukh knigakh. Kniga 1 (A General Course in Chemical Engineering Processes and Equipment: A Textbook for Institutions of Higher Education in Two Volumes), Moscow: Logos, 2006, vol. 1.

  13. Smogalev, I.P., Calculation of critical heat fluxes in the flow of underheated water at low velocities, Teploenergetika, 1981, no. 4, p. 14.

  14. Fedorov, L.F. and Rossokhin, N.G., Protsessy generatsii para na atomnykh elektrostantsiyakh (Processes for Steam Generation at Nuclear Power Plants), Moscow: Energoizdat, 1985.

    Google Scholar 

  15. Sarafraz, M.M. and Peyghambarzadeh, S.M., Experimental study on subcooled flow boiling heat transfer to water–diethylene glycol mixtures as a coolant inside a vertical annulus, Exp. Therm. Fluid Sci., 2013, vol. 50, pp. 154–162. https://doi.org/10.1016/j.expthermflusci.2013.06.003

    Article  CAS  Google Scholar 

  16. Voinov, N.A., Zhukova, O.P., and Nikolaev, A.N., Heat transfer in condensation and boiling in a tubular film evaporator, Theor. Found. Chem. Eng., 2012, vol. 46, no. 4, pp. 359–367. https://doi.org/10.1134/ S0040579512030104

    Article  CAS  Google Scholar 

  17. Gandzyuk, Yu.M., Grigorenko, I.P., and Zubrii, O.G., An equation for calculating the average thickness of a liquid film flowing down the outer surface of long tubes, Khim. Mashinostr., 1982, vol. 36, p. 49.

    CAS  Google Scholar 

  18. Slesarenko, V.N., Distillyatsionnye opresnitel’nye ustanovki (Desalinating Distillation Plants), Moscow: Energiya, 1980.

    Google Scholar 

  19. Voinov, N.A. and Nikolaev, A.N., Teplos"em pri plenochnom techenii (Heat Removal in Film Flows), Kazan: Otechestvo, 2011.

    Google Scholar 

  20. Voinov, N.A., Zhukova, O.P., Lednik, S.A., and Zemtsov, D.A., RF Patent 2580727, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Voinov.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voinov, N.A., Zhukova, O.P. & Konovalov, N.M. Hydrodynamics and Heat Transfer during Boiling in a Rotating Gas–Liquid Layer. Theor Found Chem Eng 52, 987–995 (2018). https://doi.org/10.1134/S0040579518060143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579518060143

Keywords:

Navigation