Skip to main content
Log in

Methods for High-Purity Aluminum Oxide Production for Growth of Leucosapphire Crystals (Review)

  • TECHNOLOGY OF INORGANIC SUBSTANCES AND MATERIALS
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Methods for the preparation of raw materials to produce leucosapphire are considered. It is shown that the main directions in the production of high-purity aluminum oxide raw materials are: electrochemical oxidation of aluminum, decomposition of alkoxides, high-temperature treatment of aluminum oxide in a halogen-containing atmosphere, and preliminary purification of aluminum-containing compounds followed by their decomposition. It is shown that methods of the purification of aluminum hydroxide and oxide obtained by the Bayer process are the most promising for industrial use. These methods include the complex purification and simultaneous preparation of ceramic preforms starting from aluminum hydroxides or oxides by their treatment in subcritical or supercritical steam and the following heat treatment in a halogen-containing medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akselrod, M.S. and Bruni, F.J., Modern trends in crystal growth and new applications of sapphire, J. Cryst. Growth, 2012, vol. 360, pp. 134–145. https://doi.org/ 10.1016/j.jcrysgro.2011.12.038

    Article  CAS  Google Scholar 

  2. Dobrovinskaya, E.R., Lytvynov, L.A., and Pishchik, V., Sapphire: Material, Manufacturing, Applications, Series in Micro- and Opto-Electronic Materials, Structures, and Systems, New York: Springer, 2009.

    Google Scholar 

  3. Techart.Research, Analysis of the Russian market of high-purity aluminum oxide and leucosapphire. http:// research-techart.ru/report/sapphire-report.htm. Accessed March 30, 2017.

  4. Yole Développement, Sapphire applications & market 2016: LED and consumer electronics, 2016 report by Yole Développement. https://www.i-micronews.com/ report/product/sapphire-applications-market-2016-led-and-consumer-electronic.html. Accessed March 30, 2017.

  5. Bagdasarov, Kh.S., Vysokotemperaturnaya kristallizatsiya iz rasplava (High-Temperature Melt Crystallization), Moscow: Fizmatlit, 2004.

    Google Scholar 

  6. Fil'tsov, R., Corundum of the first water, Pryamye Investitsii, 2012, no. 1 (117), pp. 42–43.

  7. Lainer, A.I., Proizvodstvo glinozema (Alumina Production), Moscow: Metallurgizdat, 1961.

    Google Scholar 

  8. Panasyuk, G.P., Belan, V.N., Voroshilov, I.L., and Shabalin, D.G., Aluminum hydroxide transformations during thermal and vapor heat treatments, Inorg. Mater., 2008, vol. 44, no. 1, pp. 45–50. https://doi.org/ 10.1134/S002016850801007X

    Article  CAS  Google Scholar 

  9. Sumitomo Chemical Co., Product databook. http://  www.sumitomo-chem.co.jp/products/docs/en_a06000. pdf. Accessed March 30, 2017.

  10. Khanamirova, A.A., Glinozem i puti umen’sheniya soderzhaniya v nem primesei (Alumina and Ways to Decrease the Concentration of Impurities in It), Yerevan: Akad. Nauk Arm. SSR, 1983.

    Google Scholar 

  11. Shkol’nikov, E.I., Lisitsyn, A.V., Vlaskin, M.S., Zhuk, A.Z., and Sheindlin, A.E., RF Patent 2519450, 2014.

  12. Lysenko, A.P., Murygin, A.G., and Nalivaiko, A.Yu., RF Patent 2538 606, 2013.

  13. Bairamov, R.K., Sabanin, A.V., Gorozhankin, E.V., Boevskaya, E.A., and Evglevskii, G.M., RF Patent 882143, 2003.

  14. Yoo, S.-J., Yoon, H.-S., Jang, H. D., Lee, J.-W., Hong, S.-T., Lee, M.-J., Lee, S.-I., and Jun, K.-W., Synthesis of aluminum isopropoxide from aluminum dross, Korean J. Chem. Eng., 2006, vol. 23, no. 4, pp. 683–687. https://doi.org/10.1007/BF02706815

    Article  CAS  Google Scholar 

  15. Drobotenko, V.V., Balabanov, S.S., and Storozheva, T.I., RF Patent 2395514, 2010.

  16. SITIS Innovation and Engineering Center, NANOKORUND: A plant for the production of ultrapure aluminum oxide. http://nizhegorod-reg.lexot.ru/lecomp. Accessed March 30, 2017.

  17. Gorshtein, G.I., Ermolina, N.S., and Fridenberg, E.S., Study of processes for fine purification from trace contaminants in the production of high-purity ammonium alum, Tr. IREA, 1967, vol. 30, p. 452.

    Google Scholar 

  18. Spravochnik khimika (Chemist’s Handbook), Nikol’skii, B.P., Ed., Moscow: Khimiya, 1965, vol. 3, 2nd ed.

  19. Wojciechowska, R., Wojciechowski, W., and Kamiński, J., Thermal decompositions of ammonium and potassium alums, J. Therm. Anal. Calorim., 1988, vol. 33, no. 2, pp. 503–509. https://doi.org/10.1007/ BF01913929

    Article  Google Scholar 

  20. Bachelard, R. and Barral, R., US Patent 4377566, 1983.

  21. Karyakin, Yu.V. and Angelov, I.I., Chistye khimicheskie veshchestva (Pure Chemical Substances), Moscow: Khimiya, 1974.

    Google Scholar 

  22. Zakutinkii, V.L., Blyakher, I.G., Kondratenko, A.B., Lashkevich, B.N., Vorko, R.M., and Pgulyai, N.A., USSR Inventor’s Certificate no. 278657, 1968.

  23. Mokhri, M., Utida, I., Savabe, I., and Vatanabe, Kh, RF Patent 2118612, 1993.

  24. Tatartchenko, V.A., Sapphire crystal growth and applications, Bulk Crystal Growth of Electronic, Optical & Optoelectronic Materials, Capper, P., Ed., Wiley Series in Materials for Electronic and Optoelectronic Applications, Chichester: Wiley, 2005, ch. 10, pp. 299– 338.

  25. Petrov, Yu.B., Induktsionnaya plavka okislov (Induction Melting of Oxides), Leningrad: Energoatomizdat, 1983.

    Google Scholar 

  26. Lopukh, D.B., Petrov, Yu.B., Pechenkov, A.Yu., Lyubomirov, A.M., and Martynov, A.P., Induction melting of oxides in cold crucibles, Perspekt. Mater., 1999, no. 6, pp. 72–77.

  27. Filippov, A.K., RF Patent 2128148, 1999.

  28. RSA LE RUBIS. http://www.rubisrsa.com. Accessed March 30, 2017.

  29. Sokolov, V.M., Tekhnologiya kompaktirovaniya (Compaction Technology), Tomsk: Tomsk. Politekh. Univ., 2009.

    Google Scholar 

  30. Ozaki, H. and Fujiwara, S., US Patent 2011/0123805 A1, 2011.

  31. All-Russian Scientific Research Institute of High-Frequency Currents, A KRISTALL-407 induction installation. http://www.vniitvch.ru/tables/kristall_407.pdf. Accessed March 30, 2017.

  32. Danchevskaya, M.N., Ivakin, Yu.D., Torbin, S.N., and Panasyuk, G.P., RF Patent 2340557, 2008.

  33. Panasyuk, G.P., Kozerozhets, I.V., Voroshilov, I.L., and Belan, V.N., RF Patent 2424189, 2010.

  34. Danchevskaya, M.N., Ivakin, Yu.D., Bagdasarov, Kh.S., Antonov, E.V., Kostomarov, D.V., and Panasyuk, G.P., Synthetic fine-crystalline corundum: A new raw material for the growth of leucosapphire, Perspekt. Mater., 2009, no. 4, pp. 27–33.

  35. Panasyuk, G.P., Danchevskaya, M.N., Belan, V.N., Voroshilov, I.L., and Ivakin, Yu.D., Phenomenology of corundum crystal formation in supercritical water fluid, J. Phys.: Condens. Matter, 2004, vol. 16, no. 14, pp. 1215–1221. https://doi.org/10.1088/0953-8984/ 16/14/033

    Google Scholar 

  36. Panasyuk, G.P., Azarova, L.A., Shabalin, D.G., Voroshilov, I.L., and Belan, V.N., High-purity ceramics: A raw material for the production of leucosapphire, VII Nauchno-prakticheskaya konferentsiya s mezhdunarodnym uchastiem “Sverkhkriticheskie flyuidy: fundamental’nye osnovy, tekhnologii, innovatsii”. Tezisy dokladov (Abstracts of Papers Presented at the VII Scientific and Engineering Conference with International Participation “Supercritical Fluids: Fundamentals, Technologies, and Innovations”), Zelenogradsk, 2013, pp. 137–138.

  37. Laufnburg, K., Mel’tgen, P., Vil’khelbm, P.R., and Lyutte, M., RF Patent 2167841, 1996.

  38. Malyukov, S. and Klunnikova, Yu., Optimization of the production of domestic sapphire, Sovrem. Elektron., 2015, no. 6, pp. 24–31.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Panasyuk.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panasyuk, G.P., Azarova, L.A., Belan, V.N. et al. Methods for High-Purity Aluminum Oxide Production for Growth of Leucosapphire Crystals (Review). Theor Found Chem Eng 53, 596–601 (2019). https://doi.org/10.1134/S0040579518050196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579518050196

Keywords:

Navigation