Skip to main content
Log in

Process to Planet Approach to Sustainable Process Design: Multiple Objectives and Byproducts

  • American-Russian Chemical Engineering Scientific School “Modeling and Optimization of Chemical Engineering Processes and Systems” May 23–25, 2016 (Kazan National Research Technological University)
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

While standard life cycle assessment methods exclude fundamental process engineering models in its analysis, sustainable process design (SPD) is plagued by the dilemma of boundary selection that results in consideration of incomplete life cycles and shifting of emissions outside the system boundary. The Process to Planet (P2P) framework bridges this gap by combining sustainable process design with environmentally extended input output analysis. This framework extending across multiple scales provides the capability of working with process variables and designing processes at the equipment scale while considering the entire life cycle through the supply chain and economic scale models. This work expands the P2P framework to account for byproducts originating from any unit within the model. The framework is further modified to incorporate an economic objective function, henceforth developing a multiobjective (MO) optimization problem for optimal design of any generic industrial process. The modified P2P framework is demonstrated by application to a corn ethanol manufacturing process case study. The MO problem is solved using the epsilon constraint method to obtain Pareto optimal frontiers that reveal the trade-off between environmental and economic dimensions of the sustainable process design problem. Comparison between commonly practiced conventional SPD and P2P SPD Pareto curves exposes the chance of choosing non optimal solutions if the former method is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F.S., Lambin, E.F., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H.J., et al., A safe operating space for humanity, Nature, 2009, vol. 461, no. 7263, pp. 472–475. doi 10.1038/461472a

    Article  Google Scholar 

  2. Shenoy, U.V., Heat Exchanger Network Synthesis: Process Optimization by Energy and Resource Analysis, Amsterdam: Elsevier, 1995.

    Google Scholar 

  3. Friedler, F., Process integration, modelling and optimisation for energy saving and pollution reduction, Appl. Therm. Eng., 2010, vol. 30, no. 16, p. 2270.

    Google Scholar 

  4. Cabezas, H., Bare, J.C., and Mallick, S.K., Pollution prevention with chemical process simulators: The generalized waste reduction (war) algorithmfull version, Comput. Chem. Eng., 1999, vol. 23, no. 4, p.623.

    Article  CAS  Google Scholar 

  5. Yee, T.F. and Grossmann, I.E., Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis, Comput. Chem. Eng., 1990, vol. 14, no. 10, pp. 1165–1184. doi 10.1016/0098-1354(90)85010-8

    Article  CAS  Google Scholar 

  6. Yee, T.F., Grossmann, I.E., and Kravanja, Z., Simultaneous optimization models for heat integration—I. Area and energy targeting and modeling of multi-stream exchangers, Comput. Chem. Eng., 1990, vol. 14, no. 10, pp. 1151–1164. doi 10.1016/0098-1354(90)85009-Y

    Article  CAS  Google Scholar 

  7. Umeda, T., Niida, K., and Shiroko, K., A thermodynamic approach to heat integration in distillation systems, AIChE J., 1979, vol. 25, no. 3, p.423.

    Article  CAS  Google Scholar 

  8. Umeda, T., Harada, T., and Shiroko, K., A thermodynamic approach to the synthesis of heat integration systems in chemical processes, Comput. Chem. Eng., 1979, vol. 3, no. 1, p.273.

    Article  CAS  Google Scholar 

  9. Douglas, J.M., Process synthesis for waste minimization, Ind. Eng. Chem. Res., 1992, vol. 31, no. 1, p.238.

    Article  CAS  Google Scholar 

  10. Bakshi, B.R., Methods and tools for sustainable process design, Curr. Opin. Chem. Eng., 2014, vol. 6, p.69.

    Article  Google Scholar 

  11. Cano-Ruiz, J. and McRae, G., Environmentally conscious chemical process design, Annu. Rev. Energy Environ., 1998, vol. 23, no. 1, p.499.

    Article  Google Scholar 

  12. Duda, M. and Shaw, J.S., Life cycle assessment, Society, 1997, vol. 35, no. 1, p.38.

    Article  Google Scholar 

  13. Owens, J., Life cycle assessment, J. Ind. Ecol., 1997, vol. 1, no. 1, p.37.

    Article  Google Scholar 

  14. Klöpffer, W., Life cycle assessment, Environ. Sci. Pollut. Res., 1997, vol. 4, no. 4, p.223.

    Article  Google Scholar 

  15. Keoleian, G.A. and Menerey, D., Life Cycle Design Guidance Manual: Environmental Requirements and the Product System, Washington, DC: U.S. Environmental Protection Agency, 1993.

    Google Scholar 

  16. Klüppel, H.-J., ISO 14041: Environmental management life cycle assessment goal and scope definition inventory analysis, Int. J. Life Cycle Assess., 1998, vol. 3, no. 6, p.301.

    Article  Google Scholar 

  17. ISO T. 14049 Environmental Management–Life Cycle Assessment Examples of Application of ISO 14041 to Goal and Scope Definition and Inventory Analysis, Geneva: International Organization for Standardization, 2000.

  18. Raynolds, M., Fraser, R., and Checkel, D., The relative mass-energy-economic (RMEE) method for system boundary selection Part 1: A means to systematically and quantitatively select LCA boundaries, Int. J. Life Cycle Assess., 2000, vol. 5, no. 1, pp. 37–46. doi 10.1007/BF02978559

    Article  Google Scholar 

  19. Consoli, F., Guidelines for Life-Cycle Assessment: A Code of Practice, Society of Environmental Toxicology and Chemistry, 1993.

    Google Scholar 

  20. Suh, S., Functions, commodities and environmental impacts in an ecological-economic model, Ecol. Econ., 2004, vol. 48, pp. 451–467. doi 10.1016/j.ecolecon. 2003.10.013

    Google Scholar 

  21. Hanes, R.J., Multidisciplinary modeling for sustainable engineering design and assessment, PhD Dissertation, Columbus, Ohio: The Ohio State University, 2015.

    Google Scholar 

  22. You, F., Graziano, D.J., and Snyder, S.W., Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input-output analysis, AIChE J., 2012, vol. 58, no. 4, p. 1157.

    Article  CAS  Google Scholar 

  23. Choi, J.-K. and Ramani, K., A Quest for Sustainable Product Design: A Systematic Methodology for Integrated Assessment of Environmentally Benign and Economically Feasible Product Design, VDM Publishing, 2009.

    Google Scholar 

  24. Hanes, R.J. and Bakshi, B.R., Sustainable process design by the process to planet framework, AIChE J., 2015, vol. 61, no. 10, p. 3320.

    Article  CAS  Google Scholar 

  25. Hanes, R.J. and Bakshi, B.R., Process to planet: A multiscale modeling framework toward sustainable engineering, AIChE J., 2015, vol. 61, no. 10, p. 3332.

    Article  CAS  Google Scholar 

  26. Suh, S. and Nakamura, S., Five years in the area of input-output and hybrid LCA, Int. J. Life Cycle Assess., 2007, vol. 12, no. 6, p.351.

    Article  Google Scholar 

  27. Treloar, G., Love, P., Faniran, O., and Iyer-Raniga, U., A hybrid life cycle assessment method for construction, Constr. Manage. Econ., 2000, vol. 18, no. 1, p.5.

    Article  Google Scholar 

  28. Suh, S. and Huppes, G., Gearing input-output model to LCA–part I: General framework for hybrid approach, CML-SSP Working Paper, Leiden, The Netherlands: Centre of Environmental Science (CML), Leiden University, 2000.

    Google Scholar 

  29. Oliveira, C., Coelho, D., and Antunes, C.H., Coupling input–output analysis with multiobjective linear programming models for the study of economy–energy–environment–social (E3S) trade-offs: A review, Ann. Oper. Res., 2016, vol. 247, pp. 471–502. doi 10.1007/s10479-014-1773-5

    Article  Google Scholar 

  30. Miller, R.E. and Blair, P.D., Input-Output Analysis: Foundations and Extensions, Cambridge: Cambridge Univ. Press, 2009.

    Book  Google Scholar 

  31. Leontief, W. and Ford, D., Air pollution and the economic structure: empirical results of input-output computations, Input-Output Techniques (Proceedings of the Fifth International Conference on Input-Output Techniques, Geneva, 1971), Bródy, A. and Carter, A.P., Eds., Amsterdam: North-Holland, 1972, pp. 9–30.

    Google Scholar 

  32. Grossmann, I.E., Drabbant, R., and Jain, R.K., Incorporating toxicology in the synthesis of industrial chemical complexes, Chem. Eng. Commun., 1982, vol. 17, nos. 1–6, p.151.

    Article  CAS  Google Scholar 

  33. Ren, H., Zhou, W., Gao, W., and Wu, Q., Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects, Appl. Energy, 2010, vol. 87, no. 12, p. 3642. doi 10.1016/j.apenergy.2010.06.013

    Article  Google Scholar 

  34. Groissböck, M. and Pickl M.J., An analysis of the power market in Saudi Arabia: Retrospective cost and environmental optimization, Appl. Energy, 2016, vol. 165, pp. 548–558. doi 10.1016/j.apenergy.2015.12.086

    Article  Google Scholar 

  35. Kniel, G.E., Delmarco, K., and Petrie, J.G., Life cycle assessment applied to process design: Environmental and economic analysis and optimization of a nitric acid plant, Environ. Prog. Sustainable Energy, 1996, vol. 15, pp. 221–228. doi 10.1002/ep.670150410

    CAS  Google Scholar 

  36. Ahmadi, P., Dincer, I., and Rosen, M.A., Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants, Energy, 2011, vol. 36, no. 10, p. 5886. doi 10.1016/j.energy.2011.08.034

    Google Scholar 

  37. Diwekar, U. and Shastri, Y., Design for environment: A state-of-the-art review, Clean Technol. Environ. Policy, 2011, vol. 13, no. 2, p.227.

    Article  Google Scholar 

  38. BEA–Bureau of Economic Analysis, USA. http://www.bea.gov. Accessed December 30, 2015.

  39. Lenzen, M., Moran, D., Kanemoto, K., and Geschke, A., Building Eora: A global multi-region input-output database at high country and sector resolution, Econ. Syst. Res., 2013, vol. 25, no. 1, p. 20. doi 10.1080/09535314.2013.769938

    Article  Google Scholar 

  40. Das, I. and Dennis, J.E., Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim., 1998, vol. 8, no. 3, p. 631. doi 10.1137/S1052623496307510

    Article  Google Scholar 

  41. Laumanns, M., Thiele, L., and Zitzler, E., An adaptive scheme to generate the Pareto front based on the epsilon-constraint method, Practical Approaches to Multi-Objective Optimization, 2005, vol. 4461.

  42. Wang, Z., Cerrate, S., Coto, C., Yan, F., and Waldroup, P.W., Use of constant or increasing levels of distillers dried grains with solubles (ddgs) in broiler diets, Int. J. Poult. Sci., 2007, vol. 6, no. 7, p.501.

    Article  Google Scholar 

  43. Gaines, A., Petersen, G., Spencer, J., and Augspurger, N., Use of corn distillers dried grains with solubles (ddgs) in finishing pigs, J. Anim. Sci., 2007, vol. 85, suppl. 2, p.96.

    Google Scholar 

  44. Lumpkins, B., Batal, A., and Dale, N., Use of distillers dried grains plus solubles in laying hen diets, J. Appl. Poult. Res., 2005, vol. 14, no. 1, p.25.

    Article  CAS  Google Scholar 

  45. Shurson, J., Noll, S., et al., Feed and alternative uses for ddgs, in Energy from Agriculture Conference, St. Louis, Mo., 2005, p.14.

    Google Scholar 

  46. US Grains Council. http://www.grains.org/buyingselling/ddgs. Accessed December 30, 2015.

  47. McAloon, A., Taylor, F., Yee, W., Ibsen, K., and Wooley, R., Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks. National Renewable Energy Laboratory Report, Washington, DC: NREL, 2000.

    Google Scholar 

  48. Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majdeski, H., and Galvez, A., Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. DTIC Document, Tech. Rep., 1999.

    Book  Google Scholar 

  49. Distillers Grain Information. https://www.extension. iastate.edu. Accessed December 30, 2015.

  50. Biegler, L.T., Grossmann, I.E., and Westerberg, A.W., Systematic Methods of Chemical Process Design, Upper Saddle River, N.J.: Prentice Hall, 1997.

    Google Scholar 

  51. Guthrie, K.M., Data and techniques for preliminary capital cost estimating, Chem. Eng., 1969, vol. 76, no. 6, p. 114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavik R. Bakshi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, T., Bakshi, B.R. Process to Planet Approach to Sustainable Process Design: Multiple Objectives and Byproducts. Theor Found Chem Eng 51, 936–948 (2017). https://doi.org/10.1134/S0040579517060045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579517060045

Keywords

Navigation