Skip to main content
Log in

Electroflotation during wastewater treatment and extraction of valuable compounds from liquid technogenic waste: A review

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Various aspects of the electroflotation technology for wastewater treatment and the extraction of valuable compounds from technological solutions have been reviewed. A brief description of the history of the appearance and improvement of the technologies based on the use of electroflotation process has been given. Their main operational parameters have been considered. Data on the mathematical simulation of the process have been provided. Achievements on the extraction of nonferrous and rare-earth metals from wastewaters, technological solutions, and technogenic waste have been discussed in detail. The results of investigations on the effect of various flocculants and surface-active compounds on the electroflotation process have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Il’in, V.I., Sto desyat' let elektroflotatsii: 1904–2014 (One Hundred and Ten Years of Electroflotation: 1904–2014), Moscow: RKhTU im. D.I. Mendeleeva, 2014.

    Google Scholar 

  2. Vilinskaya, V. S., Elektrokhimicheskie metody ochistki vody: Obzor (Electrochemical Methods of Water Purification: A Review), Moscow: VNIIPI, 1987.

    Google Scholar 

  3. Gol’man, A.M. and Kraizman, M.A., Gas generators of electroflotation units, in Sovershenstvovanie flotatsii rud i rastvorennykh veshchestv (Improving the Flotation of Ores and Dissolved Substances), Moscow: Nauka, 1976.

    Google Scholar 

  4. Mamakov, A.A., Sovremennoe sostoyanie i perspektivy primeneniya elektroliticheskoi flotaysii veshchestv (State of the Art and Prospects in Electrolytic Flotation), Kishinev: Shtiintsa, 1976, part1.

    Google Scholar 

  5. Matov, B.M., Elektroflotatsionnaya ochistka stochnych vod (Electroflotation Treatment of Wastewater), Kishinev: Kartya Moldovenyaske, 1982.

    Google Scholar 

  6. Deryagin, B.V., Dukhin, S.S., and Rulev, N.N., Mikroflotatsiya: vodoochistka, obogashchenie (Microflotation: Water Treatment and Enrichment), Moscow: Khimiya, 1986.

    Google Scholar 

  7. Kolesnikov, V.A., Il’in, V.I., Kapustin Varaksin, S.O., Kisilenko, P.N., and Kokarev, G.A., Elektroflotatsionnaya tekhnologiya ochistki stochnykh vod promyshlennykh predpriyatii (Electroflotation Technology of Treating Wastewater from Industrial Enterprises), Moscow: Khimiya, 2007.

    Google Scholar 

  8. Shukhenina, Z.M., Bagrov, V.V., Desyatov, A.V., Zubkov, A.A., Kamrukov, A.S., Kolesnikov, V.A., Konstantinov, V.E., and Novikov, D.O., Voda tekhnogennaya: Problemy, tekhnologiya, resursnaya tsennost' (Anthropogenic Water: Problems, Technology, and Resource Value), Moscow: MGTU im. N.E. Baumana, 2015.

    Google Scholar 

  9. Chen, G. and Hung, Y.T., Electrochemical waste water treatment proces, in: Handbook of Environmental Engineering, Wang, L.K., Hung, Y.-T., and Shammas, N.K., Eds., Totowa, N.J.: Humana, 2007, p. 57.

    Google Scholar 

  10. Chen, X. and Chen, G., Electroflotation, in Electrochemistry for the Environment, Comninellis, C. and Chen, G., Eds., New York: Springer, 2010, p. 263.

    Chapter  Google Scholar 

  11. Evich (Khokhrina), N.A. and Il’in, V.I., Patent information analysis in the area of water treatment by electrochemical methods, Usp. Khim. Khim. Tekhnol., 2009, vol. 23, no. 10, p. 58.

    Google Scholar 

  12. Matis, K.A., Flotation as a Separation Process New York: Wiley, 2015.

    Google Scholar 

  13. Anopol'skii, V.N., Rogov, V.M., Kurilyuk, N.S., and Ushomirskii, P.I., Energy intensiveness of flotation water treatment methods, Soviet J. Chem. Technol. 1998, vol. 10, no. 3, p. 74.

    Google Scholar 

  14. Ansorge, D.W., Trennen mit Strom. Abwasseraufbereitung durch Electroflotation, Umwelt, 1988, no. 6, p. 66.

    Google Scholar 

  15. Matis, K.A. and Gallnos, G.P., Flotation by dissolved air and electrolytic flotation, in Technology of Mineral Processing at a Crossroads. Problems and Perspectives, Wills, B.A. and Barley, R.V., Eds., Boston: Martinus Nijhoff, 1986.

    Google Scholar 

  16. Ksentini, I. and Ben Mansour, L., Modeling the hydrodynamics of an electroflotation column for the treatment of industrial waste waters, Desalin. Water Treat., 2014, vol. 56, no. 7, p. 1722.

    Article  Google Scholar 

  17. Ksentini, I., Kotti, M., and Ben Mansour, L., Effect of liquid phase physicochemical characteristics on hydrodynamics of an electroflotation column, Desalin. Water Treat., 2014, vol. 52, nos. 16–18, p. 3347.

    Article  CAS  Google Scholar 

  18. Ren, L., Zhang, Y., Qin, W., Bao, S., Wang, P., and Yang, C., Investigation of condition-induced bubble size and distribution in electroflotation using a highspeed camera, Int. J. Min. Sci. Technol., 2014, vol. 24, no. 1, p. 7.

    Article  Google Scholar 

  19. Kotti, M., Ksentini, I., and Ben Mansour, L., Bubble hydrodynamic influence on oxygen transfer rate at presence of cationic and anionic surfactants in electroflotation process, J. Hydrodyn., 2013, vol. 25, no. 5, p. 747.

    Article  Google Scholar 

  20. Brodskiy, V.A., Kolesnikov, V.A., and Il’in, V.I., Effect of the physicochemical characteristics of the disperse phase of slightly soluble compounds of nonferrous metals on the efficiency of their electroflotation extraction from aqueous solutions, Theor. Found. Chem. Eng., 2015, vol. 49, no. 2, p. 138.

    Article  CAS  Google Scholar 

  21. Brodskiy, V. and Kolesnikov, V., Dependence of the efficiency of electroflotation recovery of sparingly soluble copper compounds from wastewater on the nature of dispersed phase and on the salt composition of the medium, Gal’vanotekh. Obrab. Poverkhn., 2013, vol. 21, no. 2, p. 48.

    Google Scholar 

  22. Kolesnikov, V.A. and Dragalov, V.V., Removal of heavy metals ions from industrial waste waters, in Environmentally Devastated Areas in River Basins in Eastern Europe, NATO ASI Ser., vol. 45, Buekens, A.G., Ed., 1997, p. 359.

    Google Scholar 

  23. Kolesnikov, V.A., Il’in, V.I., and Aarinola, P.K., Development of electroflotation technology and equipment for the removal of zinc and lead from industrial effluents, in Proc. Int. Symp. on the Extraction and Applications of Zinc and Lead, Sendai, Japan, 1995, p. 512.

    Google Scholar 

  24. Kolesnikov, V.A., Il’in, V.I., Varaksin, S.O., Kokarev, G.A., and Aarinola, P.K., Electrochemicală method and equipment for treating waste waters and spent solutions, in Simp. cu Participare International “Ecologie si Acoperiri Metalice,” Sinata, Romania, 1995; TCMM. Bucuresti, 1995, no. 12, p. 143.

    Google Scholar 

  25. Nepochatov, V.M., Kolesnikov, V.A., Kryuchkova, L.A., and Titov, A.L., Electroflotation recovery of manganese hydroxide from liquid anthropogenic waste, Khim. Prom–st. Segodnya, 2009, no. 2, p. 29.

    Google Scholar 

  26. Kudryavtsev, V.N. and Kolesnikov, V.A., Uredaji za potpunj uklanjanje metalnih jona iz ispirnih voda metodom elektroflotacije, Zašt. Mater., 1992, vol. 33, no. 1, p. 11.

    Google Scholar 

  27. Kudryavtsev, V.N., Kolesnikov, V.A., and Majorov, V.B., Electroflotation removal of aluminum ions from electroplating waste waters, Proc. 3rd East Congr. on Surface Treatment of Aluminum and Other Light Metals, Schwäbisch Gmünd, Germany, 1992, p. 120.

    Google Scholar 

  28. Kolesnikov, V.A., Il’in, V.I., Varaxin, S.O., Kokarev, G.A., and Aarinola, P.K., Electrochemical method and equipment for treating waste waters and spent solutions, Proc. Symp. TCMM “Ecologie si Acoperiri Metalice,” Bucharest; 1995, no. 12, p. 143.

    Google Scholar 

  29. Kolesnikov, V.A. and Kudryavtsev, V.N., Theoretical and applied aspects of using electroflotation methods for wastewater treatment in the surface finishing industry, Proc. Annual Technical Conf. and Exhibit of the American Electroplaters and Surface Finishers Society, Baltimore, Md., 1995, p. 31.

    Google Scholar 

  30. Kolesnikov, V.A. and Kudryavtsev, V.N., Theoretical and applied aspects of using electroflotation method for waste water treatment of surface finishing industry, Proc. 1st Int. Conf. on Electrochemistry and Its Applications, Luxor, Egypt, 1996, p. 43.

    Google Scholar 

  31. Kolesnikov, V.A., Shalyt, E.A., and Aarinola, P.K., Complex technology of electrochemical water treatment with regeneration of valuable components in electroplating production, Proc. 3rd Symp. on Electrochemistry in Mineral and Metal Processing, St. Louis, Miss., 1992.

    Google Scholar 

  32. Kolesnikov, V.A., Kruglikov, S.S., and Varaksin, S.O., Electrochemical reagent-free treatment of waste water, Proc. National Association for Surface Finishing Annual Conf. and Trade Show 2010 (SUR/FIN 2010), Grand Rapids, Mich., 2010, vol. 1, p. 278.

    CAS  Google Scholar 

  33. Kolesnikov, V.A., Varaksin, S.O., and Kryuchkova, L.A., Electroflotation extraction of valuable components from waters of electroplating works, with water recycling, Russ. J. Electrochem., 2001, vol. 37, no. 7, p. 760.

    Article  CAS  Google Scholar 

  34. Nepochatov, V.M., Kolesnikov, V.A., Kharlamov, V.I., and Tokov, M.Yu., Development of a technology for electrolytic manganese production from lean carbonate ores of the Usinsk deposit, Probl. Chern. Metall. Materialoved., 2012, no. 1, p. 19.

    Google Scholar 

  35. Kolesnikov, V.A., Kryuchkova, L.A., Il’in, V.I., and Kolesnikov, A.V., Electroflotation recovery of metal ions contained in multicomponent systems from wastewater of electroplating plants, Gal’vanotekh. Obrab. Poverkhn., 2015, vol. 23, no. 1, p. 51.

    Google Scholar 

  36. Kuz’kin, S.F. and Gol’man, A.M., Flotatsiya ionov i molekul (Flotation of Ions and Molecules), Moscow: Nedra, 1971.

    Google Scholar 

  37. Rulev, N.N., Kolesnikov, V.A. and Kesar’, S.V., Effect of coalescence on the bubble size distribution in the bubbler of a flotation machine, Khim. Tekhnol. Vody, 1991, vol. 13, no. 2, p. 127.

    CAS  Google Scholar 

  38. Rulev, N.N., Kolesnikov, V.A., and Shalyt, E.A., Effect of gas bubble coalescence on the kinetics of microflotation in continuous apparatuses, Khim. Tekhnol. Vody, 1990, vol. 12, no. 3, p. 216.

    CAS  Google Scholar 

  39. Ksenofontov, B.S., Antonova, E.S., Bondarenko, A.V., Kapitonova, S.N., and Yuryeva, O.A., Modeling of wastewater treatment by electroflotation, Ekol. Prom. Proizdod., 2015, no. 1, p. 36.

    Google Scholar 

  40. Kotti, M., Ksentini, I., and Ben Mansour, L., Impact of hydrodynamic regime on the capacity of oxygen transfer in a stirred electroflotation column, Desalin. Water Treat., 2014, vol. 52, nos. 7–9, p. 1693.

    Article  CAS  Google Scholar 

  41. Sarkar, Md.S.K.A., Machniewski, P.M., and Evans, G.M., Modeling and measurement of bubble formation and growth in electroflotation processes, Chem. Process. Eng., 2013, vol. 34, no. 3, p. 327.

    Article  CAS  Google Scholar 

  42. Binquan, J. and Jin, L., The mathematical model of bubble size based on the bubble nucleation theory in the process of air-flotation, Res. J. Chem. Environ., 2011, vol. 15, no. 1, p. 59.

    Google Scholar 

  43. Kolesnikov, V.A., Brodskiy, V.A., Aristov, V.M., and Il’in, V.I., Mathematical modeling of the kinetics of the electroflotation recovery of non-ferrous metals from aqueous solutions, Tsvetn. Met., 2015, no. 4, p. 50.

    Article  Google Scholar 

  44. Dmitriev, E.A., Kolesnikov, V.A., Trushin, A.M., Brodskiy, V.A., and Komlyashev, R.B., Some hydromechanical aspects of microflotation, Theor. Found. Chem. Eng., 2015, vol. 49, no. 5, p. 585.

    Article  CAS  Google Scholar 

  45. Parshina, Yu.I., Kolesnikov, V.A., and Il’in, V.I., Development of technical solutions on iron extraction from concentrated saline systems by electroflotation, Oboronnyi Kompleks—Nachno-Tekh. Prog. Ross., 2002, no. 4, p. 67.

    Google Scholar 

  46. Parshina, Yu.I., Kolesnikov, V.A., and Il’in, V.I., Application of electroflotation to treatment of process solutions with a high salt concentration, Vseross. nauchno-orakt. Konf. “Gal’vanotekhnika, obrabotka poverkhnosti i ekologiya v XXI veke” (Proc. All-Russ. Conf on Electroplating, Surface Treatment, and Ecology in the 21st Century), Moscow, 2003, p. 100.

    Google Scholar 

  47. Brodskiy, V.A. and Kolesnikov, V.A., Dependence of the efficiency of electroflotation recovery of poorly soluble copper compounds from wastewater on the nature of the dispersed phase and on the salt composition of the nedium, Gal’vanotekh. Obrab. Poverkhn., 2013, vol. 21, no. 2, p. 48.

    Google Scholar 

  48. Brodskiy, V.A. and Kolesnikov, A.V., Influence of the surface characteristics of poorly insoluble nickel, copper, and iron compounds on the efficiency of their electroflotation recovery from concentrated solutions of electrolytes, Chist. Voda: Probl.i Resheniya, 2011, nos. 1–2, p. 82.

    Google Scholar 

  49. Chirkst, D.E., Lobacheva, O.L., and Djevaga, N.V., Ion flotation of lanthanum(III) and holmium(III) from nitrate and nitrate–chloride media, Russ. J. Appl. Chem., 2012, vol. 85, no. 1, p. 25.

    Article  CAS  Google Scholar 

  50. Chirkst, D.E., Lobacheva, O.L., Berlinskiy, I.V., and Djevaga, N.V., Effect of chlorides on cerium(III) and samarium(III) ionic flotation, Russ. J. Appl. Chem., 2011, vol. 84, no. 2, p. 341.

    Article  CAS  Google Scholar 

  51. Chirkst, D.E., Lobacheva, O.L., Berlinskiy, I.V., and Djevaga, N.V., The thermodynamic properties of hydroxo compounds and the mechanism of ion flotation for cerium, europium, and yttrium, Russ. J. Phys. Chem. A, 2009, vol. 83, no. 12, p. 2022.

    Article  CAS  Google Scholar 

  52. Brodskiy, V.A., Gaidukova, A.M., and Kolesnikov, V.A., Electroflotation recovery of cerium(III) and cerium(IV) ions from aqueous solutions, Gal’vanotekh. Obrab. Poverkhn., 2014, vol. 22, no. 4, p. 44.

    Google Scholar 

  53. Kolesnikov, A.V., Gaidukov, E.N., and Kolesnikov, V.A., Studying the efficiency of an electroflotation process for the extraction of low-soluble scandium compounds from aqueous media in the presence of surfactants, Theor. Found. Chem. Eng., 2016, vol. 50, no. 5, p. 680.

    Article  Google Scholar 

  54. Meshalkin, V.P., Kolesnikov, A.V., Kovalenko, V.S., and Gaidukov, E.N., Experimental studies of the efficiency of electroflotation recovery of poorly soluble lanthanum compounds from aqueous solutions, Dokl. Chem., 2016, vol. 467, no. 1, p. 105.

    Article  CAS  Google Scholar 

  55. Kolesnikov, A.V., Gaidukov, E.N., and Kolesnikov, V.A., The role of surfactants in intensifying and increasing the efficiency of the electroflotation extraction of sparingly soluble lanthanum compounds, Theor. Found. Chem. Eng., 2016, vol. 50, no. 2, p. 142.

    Article  CAS  Google Scholar 

  56. Matis, K.A. and Peleka, E.N., Alternative flotation techniques for waste water treatment: Focus on electroflotation, Sep. Sci. Technol., 2010, vol. 45, no. 16, p. 2465.

    Article  CAS  Google Scholar 

  57. Gandurina, L.V., Organicheskie flokulyanty v tekhnologii ochistki promyshlennykh i stochnykh vod i obrabotka osadka (Organic Flocculants in Process Water and Wastewater Treatment Technology and Sediment Treatment), Saratov: DAR/VODGEO, 2007.

    Google Scholar 

  58. Kolesnikov, A.V., Kuznetsov, V.V., Kolesnikov, V.A., and Kapustin, Yu.I., The role of surfactants in the electroflotation extraction of copper, nickel and zinc hydroxides and phosphates, Theor. Found. Chem. Eng., 2015, vol. 49, no. 1, p. 1.

    Article  CAS  Google Scholar 

  59. Kharlamova, T.A., Kolesnikov, A.V., Brodskiy, V.A., and Kondratieva, E.S., Promising electrochemical processes in for wastewater treatment: I. Electroflotation, Gal’vanotekh. Obrab. Poverkhn., 2013, vol. 21, no. 1, p. 54.

    Google Scholar 

  60. Kotti, M., Ksentini, I., and Ben Mansour, L., Impact of anionic surfactants on oxygen transfer rate in the electroflotation process, Desalin. Water Treat., 2011, vol. 36, nos. 1–3, p. 34.

    Article  CAS  Google Scholar 

  61. Kotti, M., Dammak, N., Ksentini, I., and Ben Mansour, L., Effects of impurities on oxygen transfer rate in the electroflotation process, Ind. J. Chem. Technol., 2009, vol. 16, no. 6, p. 513.

    Google Scholar 

  62. Skender, A., Moulai-Mostefa, N., and Tir, M., Effects of operational parameters on the removal efficiency of non-ionic surfactant by electroflotation, Desalin. Water Treat., 2010, vol. 13, nos. 1–3, p. 213.

    Article  CAS  Google Scholar 

  63. Kolesnikov, V.A., Kapustin, Yu.I., Malyucheva, O.I., and Grechina, M.A., Electroflotation purification of wastewater from nonionic surfactants, Khim. Prom-st. Segodnya, 2005, no. 12, p. 50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolesnikov.

Additional information

Original Russian Text © V.A. Kolesnikov, V.I. Il’in, V.A. Brodskiy, A.V. Kolesnikov, 2017, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2017, Vol. 51, No. 4, pp. 361–375.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, V.A., Il’in, V.I., Brodskiy, V.A. et al. Electroflotation during wastewater treatment and extraction of valuable compounds from liquid technogenic waste: A review. Theor Found Chem Eng 51, 369–383 (2017). https://doi.org/10.1134/S0040579517040200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579517040200

Keywords

Navigation