Skip to main content
Log in

Heat and mass transfer when drying a spherical particle in an oscillating electromagnetic field

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The problem of describing heat and mass transfer upon drying the spherical particle in oscillating electromagnetic field under boundary conditions of heat and mass transfer of the third kind has been formulated and analytically solved. The numerical analysis of the process has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ginzburg, A.S., Application of Infrared Radiation in Food Processing, London: Leonard Hill, 1969.

    Google Scholar 

  2. Ratti, C. and Mujumdar, A.S., Infrared drying, in Handbook of Industrial Drying, Mujumdar, A.S., Ed., Boca Raton, Fla.: CRC, 2007, p. 423.

  3. Akulich, P.V., Dragun, V.L., and Kuts, P.S., Tekhnologii i tekhnika sushki i termoobrabotki materialov (Drying and Thermal Treatment Technologies and Techniques), Minsk: Belorusskaya Nauka, 2006.

    Google Scholar 

  4. Kudra, T. and Strumillo, Cz., Thermal Processing of Biomaterials, Amsterdam: Gordon and Breach, 1998.

    Book  Google Scholar 

  5. Bon, J. and Kudra, T., Enthalpy-driven optimization of intermittent drying, Drying Technol., 2007, vol. 25, no. 4, p. 523.

    Article  Google Scholar 

  6. Vaquiro, H.A., Clemente, G., García-Pérez, J.V., Mulet, A., and Bonb, J., Enthalpy-driven optimization of intermittent drying of Mangifera indica L, Chem. Eng. Res. Des, 2009, vol. 87, p. 885.

    Article  CAS  Google Scholar 

  7. Rudobashta, S.P. and Grigor’ev, I.V., Pulse infrared drying of seeds, Prom. Teplotekh., 2011, vol. 33, no. 8, p. 85.

    Google Scholar 

  8. Kian Jon Chua and Siaw Kiang Chou., A comparative study between intermittent microwave and infrared drying of bioproducts, Int. J. Food Sci. Technol., 2005, vol. 40, no. 1, p. 23.

    Article  Google Scholar 

  9. Afanas’ev, A.M. and Siplivyi, B.N., Dependence of quality of microwave drying on the depth of electromagnetic wave penetration, Fiz. Voln. Prots. Radiotekh. Sist., 2008, vol. 11, no. 1, p. 95.

    Google Scholar 

  10. Afanas’ev, A.M., Mikhailov, V.K., and Siplivyi, B.N., Mathematical modeling of two-dimensional problems of the theory of electromagnetic drying, Biomed. Radioelektron., 2008, no. 11, p. 29.

    Google Scholar 

  11. Perre, P. and Turner, I.A., A complete coupled model of the combined microwave and convective drying of softwood in an oversized waveguide, Proc. 10th Int. Drying Symp. (IDS’96), Krakow, Poland, 1996, p. 183.

    Google Scholar 

  12. Grinchik, N.N., Akulich, P.V., Adamovich, A.L., Kuts, P.S., and Kundas, S.P., Modeling of nonisothermal heat and moisture transfer in capillary-porous media in periodic microwave heating, J. Eng. Phys. Thermophys., 2007, vol. 80, no. 1, p. 1.

    Article  Google Scholar 

  13. Akulich, P.V., Temruk, A.V., and Akulich, A.V., Modeling and experimental investigation of the heat and moisture transfer in the process of microwave-convective drying of vegetable materials, J. Eng. Phys. Thermophys., 2012, vol. 85, no. 5, p. 1034.

    Article  Google Scholar 

  14. Likitrattanaporn, Ch. and Noomhorm, Ath., Effects of simultaneous parboiling and drying by infrared radiation heating on parboiled rice quality, Drying Technol., 2011, vol. 29, no. 9, p. 1066.

    Article  CAS  Google Scholar 

  15. Rudobashta, S.P., Kartashov, E.M., and Zuev, N.A., Heat and mass transfer in drying in oscillating electromagnetic field, Theor. Found. Chem. Eng., 2011, vol. 45, no. 6, p. 830.

    Article  CAS  Google Scholar 

  16. Zuev, N.A., Drying and pre-sowing stimulation of seeds with an oscillating electromagnetic field in the infrared frequency range, Cand. Sci. (Eng.) Dissertation, Moscow: Moscow State Univ. of Agricultural Engineering, 2013.

    Google Scholar 

  17. Rudobashta, S.P., Zueva, G.A., and Zuev, N.A., Seed stimulation by oscillating infrared thermal treatment, Prom. Teplotekh., 2013, vol. 35, no. 7, p. 218.

    Google Scholar 

  18. Kowalski, S.J. and Rajewska, K., Convective drying enhanced with microwave and infrared radiation, Drying Technol., 2009, vol. 27, nos. 7–8, p. 878.

    Article  CAS  Google Scholar 

  19. Puente-Díaz, L. Kong Ah-Hen., Vega-Gálvez, A., Lemus-Mondaca, R., and Di Scala, K., Combined infrared–convective drying of murta (Ugni molinae turcz) berries: Kinetic modeling and quality assessment, Drying Technol., 2013, vol. 31, no. 3, p. 329.

    Article  Google Scholar 

  20. Frolov, V.F., Modelirovanie sushki dispersnykh materialov (Simulation of Dispersed Material Drying), Leningrad: Khimiya, 1987.

    Google Scholar 

  21. Fedosov, S.V., Teplomassopernos v tekhnologicheskikh protsessakh stroitel’noi industrii (Heat and Mass transfer in Processes of the Building Industry), Ivanovo: IPK “PresSto,” 2010.

    Google Scholar 

  22. Rudobashta, S.P., Mathematical simulation of the convective drying of dispersed materials, Izv. Ross. Akad. Nauk. Energ., 2000, no. 4, p. 98.

    Google Scholar 

  23. Padokhin V.A., Zueva G.A., Kokurina G.N., Kochkina N.E., and Fedosov, S.V., Complex mathematical description of heat and mass transfer in the drying of an infinite cylindrical body with analytical methods of heat-conduction theory, Theor. Found. Chem. Eng., 2015, vol. 49, no. 1, p. 50.

    Article  CAS  Google Scholar 

  24. Lykov, A.V., Teoriya sushki (Theory of Drying), Moscow: Energiya, 1968.

    Google Scholar 

  25. Rudobashta, S.P., Massoperenos v sistemakh s tverdoi fazoi (Mass Transfer in Systems with a Solid Phase), Moscow: Khimiya, 1980.

    Google Scholar 

  26. Rudobashta, S.P. and Kartashov, E.M., Diffuziya v khimiko-tekhnologicheskikh protsessakh (Diffusion in Chemical Technology Processes), Moscow: KolosS, 2010.

    Google Scholar 

  27. Kartashov, E.M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel (Analytical Methods in the Thermal Conduction Theory of Solids), Moscow: Vysshaya Shkola, 2001.

    Google Scholar 

  28. Lykov, A.V., Teoriya teploprovodnosti (Thermal Conduction Theory), Moscow: Vysshaya Shkola, 1967.

    Google Scholar 

  29. Rudobashta, S.P., Zueva, G.A., and Zuev, N.A., Mass conductivity in the drying of colloid capillary-porous materials, Izv. Vyssh. Uchebn. Zaved., Ser.: Khim. Khim. Tekhnol., 2014, vol. 57, no. 1, p. 103.

    CAS  Google Scholar 

  30. Rudobashta, S.P., Zueva, G.A., and Zuev, N.A., Hygroscopic properties of seeds, Izv. Vyssh. Uchebn. Zaved., Ser.: Khim. Khim. Tekhnol., 2015, vol. 58, no. 1, p. 68.

    CAS  Google Scholar 

  31. Teplofizicheskie kharakteristiki pishchevykh produkto:. Spravochnoe posobie (Thermophysical Characteristics of Food Products: A Handbook), Ginzburg, A.S., Ed., Moscow: Pishchevaya Prom–st., 1975.

  32. Teoreticheskie osnovy teplotekhniki. Teplotekhnicheskii eksperiment: Spravochnik (Theoretical Foundations of Thermal Engineering. Thermotechnical Experiment: A Handbook), Grigor’ev, V.A. and Zorin, V.M., Eds., Moscow: Energoatomizdat, 1988, Vol. 2.

  33. Aksel’rud, G.A. and Lysyanskii, V.M., Ekstragirovanie: Sistema tverdoe telo-zhidkost’ (Extracton: Solid–Liquid Systems), Leningrad: Khimiya, 1974.

  34. Planovskii, A.N., Mushtaev, V.I., and Ul’yanov, V.M., Sushki ofdispersnykh materialov v khimicheskoi promyshlennosti (Drying of Dispersed Materials in the Chemical Industry), Moscow: Khimiya, 1979.

    Google Scholar 

  35. Aerov, M.E. and Todes, O.M., Gidravlicheskie i teplovye osnovy raboty apparatov so statsionarnym i kipyashchim zernistym sloem (Hydraulic and Thermal Principles of the Operation of Fixed-and Fluidized-Bed Apparatuses), Moscow: Khimiya, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Rudobashta.

Additional information

Original Russian Text © S.P. Rudobashta, G.A. Zueva, E.M. Kartashov, 2016, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2016, Vol. 50, No. 5, pp. 539–550.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudobashta, S.P., Zueva, G.A. & Kartashov, E.M. Heat and mass transfer when drying a spherical particle in an oscillating electromagnetic field. Theor Found Chem Eng 50, 718–729 (2016). https://doi.org/10.1134/S0040579516050365

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579516050365

Keywords

Navigation