Skip to main content
Log in

Recycling rare-earth-metal waste using hydrometallurgical methods

  • Selected Articles from the Journal Khimicheskaya Tekhnologiya
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The present review describes the state of the problem of extracting rare earth metals from secondary raw materials, such as high-coercivity magnets, nickel–metal hydride batteries (NiMH), and phosphors of coatings of fluorescent lamps. Methods for waste processing with mineral acids and other solvents, the removal of associated impurities from rare-earth components, separation, and deep purification (mainly by solvent extraction) have been considered. Data on the industrial applications of hydrometallurgical processes for rare earth metals recycling have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schüler, D. Buchert, M., Liu, R., Dittrich, G.S., and Merz, C., Study on Rare Earths and Their Recycling: Final Report for the Greens/EFA Group in the European Parliament, Darmstadt: OKO-Inst., 2011.

    Google Scholar 

  2. Panayotova, M. and Panayotov, V., Recovery of rare earth metals from scraps, Ann. Univ. Mining and Geol., 2012, vol. 55, part II,pp. 142–147.

    Google Scholar 

  3. Richards, F., Rare earth magnet recycling faces uncertain future, Electronic Engineering Times, 2012, August 1. http://powerelectronics.com/news/rareearth-magnet-recycling-faces-uncertain-future.

    Google Scholar 

  4. Gepasimova, L.G., Nikolaev, A.I., Maslova, M.V., Okhpimenko, R.F., and Shestakov, S.V., Recycling of waste containing rare-earth elements, Khim. Tekhnol., 2010, vol. 11, no. 2, pp. 122–126.

    Google Scholar 

  5. Zots, N.V., Glushchenko, Yu.G., Shestakov, S.V., Nechaev, A.V., Kozyrev, A.B., and Sibilev, A.S., RF Patent 2431691, 2011.

    Google Scholar 

  6. Linyan, Li., Shengming, Xu., Zhongjun, Ju., and Fang, Wu., Recovery of Ni, Co and rare earths from spent Ni-metal hydride batteries and preparation of spherical Ni(OH)2, Hydrometallurgy, 2009, vol. 100, no. 1, pp. 41–46.

    Google Scholar 

  7. Zhang, P., Yokoyama, T., Itabashi, O., Wakui, Y., Suzuki, T.M., and Inoue, K., Recovery of nickel-metal hydride batteries scrap, J. Power Sources, 1999, vol. 77, no. 2, pp. 116–122.

    Article  CAS  Google Scholar 

  8. Rodrigues, L. and Mansur, M., Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel metal hydride batteries, J. Power Sources, 2010, vol. 195, no. 11, pp. 3735–3741.

    Article  CAS  Google Scholar 

  9. Bertuol, D.A., Bernardes, A.M., and Tenorio, J.A.S., Simple method for extraction of valuable elements from spent batteries, J. Power Sources, 2009, vol. 193, no. 2, pp. 914–923.

    Article  CAS  Google Scholar 

  10. Sato, H. and Motegi, T., Recycling of rare-earth elements from wastes of the optic industry, J. Alloys Compd., 2006, vol. 425, nos. 1–2, pp. 145–147.

    Article  Google Scholar 

  11. Karmannikov, V.P., Klimenko, M.A., Raichstein, V.I., Bochkarev, E.P., Karpov, Yu.A., Berezkina, V.V., and Saksing, P., RF Patent 2097330, 1996.

    Google Scholar 

  12. Lyman, J.W., Patent EP 0790322 B1, 1995.

    Google Scholar 

  13. Ellis, T.W., Schmidt, F.A., and Jones, L.L., Leaching and precipitation of Ni, Co and rare earths from spent batteries, in Proc. TMS Conf. Metals and Materials Waste Reduction, Recovery and Remediation, Warrendale, Penn.,1994, pp. 199–208.

    Google Scholar 

  14. Wellens, S., Verachtert, K., and Binnemans, K., Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: Separations relevant to rare-earth magnet recycling, Green Chem., 2013, vol. 15, no. 4, pp. 919–927.

    Article  Google Scholar 

  15. Zhang, P., Yokoyama, T., Itabashi, O., Wakui, Y., Suzuki, T.M., and Inoue, K., Hydrometallurgical process for recovery of metal values from spent nickelmetal hydride secondary batteries, Hydrometallurgy, 1998, vol. 50, no. 1, pp. 61–75.

    Article  CAS  Google Scholar 

  16. Binnemans, K., Jones, P.T., Blanpain, B., Gerven, T.V., Yang, Y., and Walton, A., Recycling of rare earths: A critical review, J. Cleaner Prod., 2013, vol. 51, pp. 1–22.

    Article  CAS  Google Scholar 

  17. Rabah, M.A., Recycling of rare earths from spent fluorescent lamps, Waste Manage., 2008, vol. 28, no. 2, pp. 318–325.

    Article  CAS  Google Scholar 

  18. Otto, R. and Wojtalewicz-Kasprzak, A., US Patent 7976798, 2011.

    Google Scholar 

  19. Tanaka, M., Oki, T., Koyama, K., Narita H., and Oishi, T., Recycling of rare earths from scrap, in Handbook on the Physics and Chemistry of Rare Earths, Bunzli, J.C.G. and Pecharsky, V.K., Eds., Amsterdam: Elsevier, 2013, vol. 43, pp. 159–212.

    Article  CAS  Google Scholar 

  20. Porob, D.G., Srivastava, A.M., Nammalvar, P.K., Ramachandran, G.C., and Comanzo, H.A., US Patent 8137645, 2012.

    Google Scholar 

  21. Anand, T., Mishra, B., Apelian, D., and Blanpain, B., The case for recycling of rare earth metals—a CR3 communication, J. Met., 2011, vol. 63, no. 6, pp. 8–9.

    Google Scholar 

  22. Resende, L.C. and Morais, C., Study of the recovery of rare earth elements from computer monitor scraps—leaching experiments, Miner. Eng., 2010, vol. 23, no. 3, pp. 277–280.

    Article  CAS  Google Scholar 

  23. Moss, R.L., Tzimas, E., and Willis, P., Critical Metals in the Path towards the Decarbonisation of the EU Energy Sector, Luxembourg: Publications Office of the European Union, 2013.

    Google Scholar 

  24. Binnemans, K. and Jones, P.T., Perspectives for the recovery of rare earths from end-of-life fluorescent lamps, J. Rare Earths, 2014, vol. 32, no. 3, pp. 195–205.

    Article  CAS  Google Scholar 

  25. Guyonnet, D., Planchon, M., Rollat, A., Escalon, V., Vaxelaire, S., and Tuduri, J., Primary and secondary sources of rare earths in the EU-28: Results of the ASTER project, Proc. ERES2014: 1st European Rare Earth Resources Conf., Milos, Greece, 2014, pp. 66–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Polyakov.

Additional information

Original Russian Text © E.G. Polyakov, A.S. Sibilev, 2015, published in Khimicheskaya Tekhnologiya, 2015, Vol. 16, No. 5, pp. 303–309.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, E.G., Sibilev, A.S. Recycling rare-earth-metal waste using hydrometallurgical methods. Theor Found Chem Eng 50, 607–612 (2016). https://doi.org/10.1134/S0040579516040266

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579516040266

Keywords

Navigation