Skip to main content
Log in

Comminution of pharmaceutical substances by the adiabatic expansion of supercritical fluid solutions

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The adiabatic expansion of supercritical fluid solutions and solubility in pharmaceutical substance–carbon dioxide systems have been investigated. The solubility and average particle size of pharmaceutical substances depend on thermodynamic and geometric parameters of the process. Experimental data on the solubility of pharmaceutical substances in supercritical carbon dioxide have been gained, and empirical binary molecular interaction parameters for the Peng–Robinson equation have been derived. A numerical solution has been obtained for the unified model of nucleation and particle growth (in the drop theory approximation) in the expansion of a steady-state, two-dimensional, viscous, axisymmetric, compressible, supercritical carbon dioxide–pharmaceutical substance flow in a channel with a constant cross section and in a free jet. The correlation parameter of the condensation function, which characterizes the particle growth kinetics, has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valyashko, V.M., Phase equilibria involving supercritical fluids, Sverkhkrit. Flyuidy: Teor. Prakt., 2006, vol. 1, no. 1, pp. 10–26.

    Google Scholar 

  2. Tomasko, D.L., Li, H., Liu, D., Wingert, M.J., Lee, L.J., and Koelling, K.W., A review of CO2 applications in the processing of polymers, Ind. Eng. Chem. Res., 2003, vol. 42, pp. 6431–6456.

    Article  CAS  Google Scholar 

  3. Alsoy, S. and Duda, J.L., Processing of polymers with supercritical fluids, Chem. Eng. Technol., 1999, vol. 22, pp. 971–973.

    Article  CAS  Google Scholar 

  4. Mchugs, M.A. and Krukonis, V.J., Supercritical Fluid Extraction, Boston Butterworth–Heinemann, 1994.

    Google Scholar 

  5. Kendal, J.L., Canelas, D.A., Young, J.L., and de Simone, J.M., Polymerizations in supercritical carbon dioxide, Chem. Rev., 1999, vol. 99, pp. 543–563.

    Article  Google Scholar 

  6. Hyatt, J.A., Liquid and supercritical carbon dioxide as organic solvents, Org. Chem., 1984, vol. 49, pp. 5097–5101.

    Article  CAS  Google Scholar 

  7. Bagratashvili, V.N., Bogorodski, S.E., Konovalov, A.N., Kubyshkin, A.P., Novitski, A.A., Popov, V.K., Upton, C., and Howdle, S.M., Obtaining bioresorbable polymer microparticles using supercritical fluids, Sverkhkrit. Flyuidy: Teor. Prakt., 2007, vol. 2, pp. 53–60.

    Google Scholar 

  8. de Simone, J.M. and Guan, Z., Synthesis of fluoropolymers in supercritical carbon dioxide, Science, 1992, vol. 257, pp. 945–956.

    Article  CAS  Google Scholar 

  9. Türk, M., Upper, G., and Hils, P., Formation of composite drug–polymer particles by co-precipitation during the rapid expansion of supercritical fluids, J. Supercrit. Fluids, 2006, vol. 39, pp. 253–263.

    Article  Google Scholar 

  10. Agyarko, L., Nanopowder production: a comparison of several methods, Nat. Sci. Found. Res. Exp. Undergrad., 2004, vol. 9, pp. 35–63.

    Google Scholar 

  11. Kuznetsova, I.V, Gil’mutdinov, I.M., Khairutdinov, V.F., Mukhamadiev, A.A., Gumerov, F.M., and Sabirzyanov, A.N., Dispersion of pharmaceutical and polymer materials using supercritical fluids, Vestn. Kazan. Gos. Tekhnol. Univ., 2010, no. 2, pp. 321–328.

    Google Scholar 

  12. Gil’mutdinov, I.I., Gil’mutdinov, I.M., Kuznetsova, I.V., and Sabirzyanov, A.N., Solubility of methylparaben in supercritical carbon dioxide, Vestn. Kazan. Gos. Tekhnol. Univ., 2012, vol. 15, no. 1, pp. 108–110.

    Google Scholar 

  13. Gil’mutdinov, I.I., Kuznetsova, I.V., Ilalov, R.R., Gil’mutdinov, I.M., Mukhamadiev, A.A., and Sabirzyanov, A.N., Dispersion of ibuprofen by the rapid expansion of a supercritical solution, Vestn. Kazan. Gos. Tekhnol. Univ., 2011, vol. 14, no. 3, pp. 38–43.

    Google Scholar 

  14. Gil’mutdinov, I.I., Kuznetsova, I.V., and Sabirzyanov, A.N., Obtaining ibuprofen/polyethylene glycol 4000 and methylparaben/polyethylene glycol 4000 composite particles and study of their morphology and size, Vestn. Kazan. Gos. Tekhnol. Univ., 2013, vol. 16, pp. 96–98.

    Google Scholar 

  15. Gil’mutdinov, I.I., Gil’mutdinov, I.M., Kuznetsova, I.V., Safina, L.K., and Sabirzyanov, A.N., Experimental and theoretical study of methylparaben and ibuprofen solubility in supercritical carbon dioxide at T = 308 K, Vestn. Kazan. Technol. Univ., 2013, vol. 16, no. 18, pp. 57–59.

    Google Scholar 

  16. Gilmutdinov, I.I., Kuznetsova, I.V., Gilmutdinov, I.M., and Sabirzynov, A.N, Production and encapsulation of microand nanoparticles of pharmaceutical substances with the use of supercritical fluid, Proc. 10th Conf. on Supercritical Fluids and Their Applications, Napoli, 2013.

    Google Scholar 

  17. Gil’mutdinov, I.I., Kuznetsova, I.V., Gil’mutdinov, I.M., and Sabirzyanov, A.N., Mechanism of ibuprofen and methylparaben particle formation from supersaturated solutions in subcritical carbon dioxide, Vestn. Kazan. Technol. Univ., 2013, vol. 16, no. 9, pp. 83–87.

    Google Scholar 

  18. Gil’mutdinov, I.I., Kuznetsova, I.V., Gil’mutdinov, I.M., Mukhamadiev, A.A., and Sabirzyanov, A.N., Ibuprofen solubility in supercritical carbon dioxide, Sverkhkrit. Flyuidy: Teor. Prakt., 2012, vol. 7, no. 3, pp. 80–90.

    Google Scholar 

  19. Fishtine, S.H., The modified Lydersen method for predicting the critical constant of pure substances, Z. Phys. Chem., 1980, vol. 123, pp. 39–49.

    Article  CAS  Google Scholar 

  20. Klincewicz, K.M. and Reid, R.C., Estimation of critical properties with group contribution methods, AIChE J., 1984, vol. 30, no. 1, pp. 137–142.

    Article  CAS  Google Scholar 

  21. Gil’mutdinov, I.I., Gil’mutdinov, I.M., Kuznetsova, I.V., Khairutdinov, V.F., Yarullin, L.Yu., and Sabirzyanov, A.N., The mathematical description of the solubility of carbon dioxide in polyethylene glycol 4000 using the Sanchez–Lacombe equation of state, Vestn. Kazan. Gos. Technol. Univ., 2013, vol. 16, no. 18, pp. 60–62.

    Google Scholar 

  22. Kuznetsova, I.V., Gil’mutdinov, I.I., Gil’mutdinov, I.M., Mukhamadiev, A.A., and Sabirzyanov, A.N., Hydrodynamics and nucleation in a channel and in a free jet during the rapid expansion of a supercritical solution, Vestn. Kazan. Gos. Technol. Univ., 2012, vol. 15, no. 1, p. 111–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Gil’mutdinov.

Additional information

Original Russian Text © I.M. Gil’mutdinov, I.I. Gil’mutdinov, I.V. Kuznetsova, A.N. Sabirzyanov, 2016, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2016, Vol. 50, No. 1, pp. 18–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil’mutdinov, I.M., Gil’mutdinov, I.I., Kuznetsova, I.V. et al. Comminution of pharmaceutical substances by the adiabatic expansion of supercritical fluid solutions. Theor Found Chem Eng 50, 15–27 (2016). https://doi.org/10.1134/S0040579516010061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579516010061

Keywords

Navigation