Skip to main content
Log in

Acetylene synthesis by methane pyrolysis on a tungsten wire

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Acetylene synthesis conditions in methane pyrolysis on a tungsten wire heating element have been investigated. At high temperatures, methane pyrolysis yields a large amount of carbon black as small particles and carbon filaments. Carbon black practically does not form when methane is diluted with helium. At methane concentrations of 10–15% and coil temperatures of 1800–2000°C, 80% methane conversion and 80% acetylene selectivity have been attained at a contact time of a few hundredths of a second. Changing from pure methane to natural gas in the specified temperature range exerts no effect on the methane conversion and acetylene selectivity. It has been experimentally demonstrated that the reaction ceases on the gas temperature is decreased below 800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashpina, O., Gas chemistry: one more chance, Chem. J., 2009, nos. 6–7, p. 26.

    Google Scholar 

  2. Holmen, A., Direct conversion of methane to fuels and chemicals, Catal. Today, 2009, vol. 142, p. 2.

    Article  CAS  Google Scholar 

  3. Miller, S.A., Atsetilen, ego svoistva, poluchenie i primenenie (Acetylene: Properties, Production, and Use), Leningrad: Khimiya, 1969, vol. 1.

    Google Scholar 

  4. Kafiatullin, R.A., Eremin, S.A., and Sagadeev, E.V., Calculation of the heats of combustion of acetylene hydrocarbons, Theor. Found. Chem. Eng., 2007, vol. 41, p. 221.

    Article  CAS  Google Scholar 

  5. Kirillov, V.A., Meshcheryakov, V.D., Brizitskii, O.F., and Terent’ev, V.Ya., Analysis of a power system based on low-temperature fuel cells and a fuel processor with a membrane hydrogen separator, Theor. Found. Chem. Eng., 2010, vol. 44, p. 227.

    Article  CAS  Google Scholar 

  6. Shigarov, A.B., Meshcheryakov, V.D., and Kirillov, V.A., Use of Pd membranes in catalytic reactors for steam methane reforming for pure hydrogen production, Theor. Found. Chem. Eng., 2011, vol. 45, p. 595.

    Article  CAS  Google Scholar 

  7. Holmen, A., Olsvik, O., and Rokstad, O.A., Pyrolysis of natural gas: chemistry and process concepts, Fuel Process. Technol., 1995, vol. 42, p. 249.

    Article  CAS  Google Scholar 

  8. Fincke, J.R., Anderson, R.P., Hyde, T., et al., Thermal Conversion of Methane to Acetylene, Final Report, Idaho National Engineering and Environmental Laboratory INEEL/EXT-99-01378, 2000.

    Google Scholar 

  9. Khan, M.S. and Crynes, B.L., Survey of recent methane pyrolysis literature, Ind. Eng. Chem., 1970, vol. 62, no. 10, p. 54.

    Article  CAS  Google Scholar 

  10. Antonov, N.A. and Lapidus, A.S., Proizvodstvo atsetilena (Acetylene Production), Moscow: Khimiya, 1970.

    Google Scholar 

  11. Vasil’eva, N.A. and Buyanov, R.A., Role of the catalysis sphere in the chain-radical process of hydrocarbon pyrolysis, Kinet. Catal., 1996, vol. 37, p. 409.

    Google Scholar 

  12. Van der Zwet, G.P., Hendriks, P.A.J.M., and van Santen, R.A., Pyrolysis of methane and the role of surface area, Catal. Today, 1989, vol. 4, p. 365.

    Article  Google Scholar 

  13. Vasil’eva, N.A., Buyanov, R.A., and Klimik, I.N., On the catalytic pyrolysis of hydrocarbons, Kinet. Katal., 1980, vol. 21, p. 220.

    Google Scholar 

  14. van Setten, B.A.A.L., Makkee, M., and Moulijn, J.A., Science and technology of catalytic diesel particulate filters, Catal. Rev., 2001, vol. 43, p. 489.

    Google Scholar 

  15. Egloff, G., Schard, R.E., and Lowry, C.D., The decomposition of the paraffin hydrocarbons, J. Phys. Chem., 1930, vol. 30, p. 1647.

    Google Scholar 

  16. Storch, H.H., Acetylene formation in thermal decomposition of hydrocarbons, Ind. Eng. Chem., 1934, vol. 26, no. 1, p. 56.

    Article  CAS  Google Scholar 

  17. Arutyunov, B.C. and Vedeneev, V.I., Methane pyrolysis at 1000–1700 K, Usp. Khim., 1991, vol. 60, p. 2663.

    Article  CAS  Google Scholar 

  18. Menon, P.M., Edwards, A., Feigerle, C.S., et al., Filament metal contamination and Raman spectra of hot filament chemical vapor deposited diamond films, Diamond Relat. Mater., 1999, vol. 8, p. 101.

    Article  CAS  Google Scholar 

  19. Kobozev, N.I. and Shneerson, A.L., Chemical induction in the thermal cracking of methane, Dokl. Akad. Nauk SSSR, 1941, vol. 33, p. 217.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Porsin.

Additional information

Original Russian Text © A.V. Porsin, A.V. Kulikov, Yu.I. Amosov, V.N. Rogozhnikov, A.S. Noskov, 2014, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2014, Vol. 48, No. 4, pp. 426–433.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porsin, A.V., Kulikov, A.V., Amosov, Y.I. et al. Acetylene synthesis by methane pyrolysis on a tungsten wire. Theor Found Chem Eng 48, 397–403 (2014). https://doi.org/10.1134/S0040579514040241

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579514040241

Keywords

Navigation