Skip to main content
Log in

Properties of nanostructured titanium nickelide and composite based on it

  • Nanomaterials and Nanotechnology
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The properties of nanostructured nitinol (Ni, 55.91 wt %; Ti, 44.03 wt %) in the initial state and after mechanical and the thermal treatment and a composite of nitinol with a tantalum surface layer obtained by magnetron sputtering have been studied. Compared with microstructured nitinol, the use of nanostructured nitinol for medical appliances, like stent, has great opportunities due to better corrosion resistance in solutions that model the physiological media of a human organism and the decreased diffusion of nickel ions into solution below the admitted average dietary intake of 200–300 mg/day in solutions of any acidity. Surface mechanical polishing increases its corrosion resistance by two to three times more. Compared with nitinol, the composite of nitinol with a tantalum surface layer is ∼7–11% better by strength, plasticity, and surface microhardness and characterized by the absence of a corrosion processes and diffusion of metal ions into solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stoeckel, D., Pelton, A.R., and Duerig, T.W., Self-expanding nitinol stents: Material and design considerations, Eur. Radiol., 2004, vol. 14, p. 2992.

    Article  Google Scholar 

  2. Shabalovskaya, S., On the nature of the biocompatibility and medical applications of NiTi shape memory and superelastic alloys, Bio-Med. Mater. Eng., 1996, vol. 6, p. 267.

    CAS  Google Scholar 

  3. Gyunter, V.O., Khodorenko, V.N., Yasenchuk, Yu.F., and Chekalkin, T.L., Nikelid titana: Meditsinskii material novogo pokoleniya (Titanium Nickelide: A Next-Generation Medical Material), Tomsk: MITs, 2006.

    Google Scholar 

  4. Pelton, A.R., DiCello, J., and Miyazaki, S., Optimization of processing and properties of medical grade Nitinol wire, Minim. Invasive Ther. Allied Technol., 2000, vol. 9, p. 107.

    Article  Google Scholar 

  5. Stoeckel, D., Nitinol medical devices and implants, Minim. Invasive Ther. Allied. Technol., 2000, vol. 9, p. 81.

    Article  Google Scholar 

  6. Wever, D.J., Veldhuizen, A.G., de Vries, J., et al., Electrochemical and surface characterization of a nickel-titanium alloy, Biomaterials, 1998, vol. 19, p. 761.

    Article  CAS  Google Scholar 

  7. Barrett, R.D., Bishara, S.E., and Quinn, J.K., Biodegradation of orthodontic appliances: Part I. Biodegradation of nickel and chromium in vitro, Am. J. Orthod. Dentofacial Orthoped., 1993, vol. 103, p. 8.

    Article  CAS  Google Scholar 

  8. Bishara, S.E., Barrett, R.D., and Selim, M.I., Biodegradation of orthodontic appliances: Part II. Changes in the blood level of nickel, Am. J. Orthod. Dentofacial Orthoped., 1993, vol. 103, p. 15.

    Article  Google Scholar 

  9. Ryhanen, J., Niemi, E., Serlo, W., et al., Biocompatibility of nickel-titanium shape-memory metal and its corrosion behavior in human cell cultures, J. Biomed. Mater. Res., 1997, vol. 35, p. 451.

    Article  CAS  Google Scholar 

  10. Trepanier, C., Venugopalan, R., Messer, R., et al., Effect of passivation treatments on nickel release from Nitinol, Trans. 6th World Biomaterials Congr., Minneapolis, Minn., 2000, p. 1043.

    Google Scholar 

  11. ASTM F2129-01: Standard test method for conducting cyclic potentiodynamic polarization measurements to determine the corrosion susceptibility of small implant devices, 2002.

  12. Trepanier, C., Tabizian, M., Yahia, L.H., et al., Effect of modification of oxide layer on NiTi stent corrosion resistance, J. Biomed. Mater. Res., 1998, vol. 43, p. 433.

    Article  CAS  Google Scholar 

  13. Trepanier, C., Fino, J., Zhu, L., and Pelton, A.R., Corrosion resistance of oxidized Nitinol, Proc. SMST-2003, Monterey, Calif., 2004. p. 267.

    Google Scholar 

  14. Zabolotnyi, V.T., Belousov, O.K., Palii, N.A., Goncharenko, B.A., Armaderova, E.A., and Sevost’yanov, M.A., Materials science aspects of the production, treatment, and properties of titanium nick-elide for application in endovascular surgery, Russ. Metall., 2011, no. 5, p. 437.

    Google Scholar 

  15. Zabolotnyi, V.T., Goncharenko, B.A., Kolmakov, A.G., and Sevost’yanov, M.A., Development of Technologies for production of promising medical shape-memory nanomaterials and articles, Materialy konf. i seminarov po nauchnym napravleniyam programmy “Fundamental’nye nauki — medicine” v 2009 godu (Proc. Conf. and Workshops in the Scientific Areas of the Program “Fundamental Sciences for Medicine” in 2009), Moscow, 2009, p. 212.

    Google Scholar 

  16. Sevost’yanov, M.A., Kolmakov, A.G., Goncharenko, B.A., et al., Mechanical properties of medical TiNi alloys with a nanophase structure, Materialy IX Vseross. konf. “Fizikokhimiya ul’tradispersnykh (nano-) sistem” (Proc. 9th Russian National Conf. on the Physical Chemistry of Ultradispersed (Nano) Systems), Izhevsk, 2010.

    Google Scholar 

  17. Sevost’yanov, M.A., Goncharenko, B.A., Kolmakov, A.G., et al., Heat treatment effect on the mechanical properties of Nitinol, Materialy XIX Peterburgskikh chtenii po problemam prochnosti (Proc. 19th Petersburg Readings on Mechanical Strength Problems), St. Petersburg, 2010, p. 69.

    Google Scholar 

  18. Goncharenko, B.A., Sevost’yanov, M.A., Kolmakov, A.G., et al., Production of nanostructured Nitinol for medicinal applications, Materialy IV Vserossiiskoi konf. po nanomaterialam (Proc. 4th Russian National Conf. on Nanomaterials), Moscow, 2011, p, 437.

    Google Scholar 

  19. Vrednye khimicheskie veshchestva: Neorganicheskie soedineniya elementov I–VIII grupp (Harmful Chemicals: Group I–VIII Inorganic Compounds), Filov, V.A., Ed., Leningrad: Khimiya, 1988, vols. 1, 2.

    Google Scholar 

  20. Zabolotnyi, V.T., Kolmakov, A.G., Goncharenko, B.A., et al., Biocompatible composite for stents, Materialy Vserossiiskogo soveshchaniya “Biomaterialy v meditsine” (Proc. Russian National Conf. on Biomaterials for Medicine), Moscow, 2009, p. 59.

    Google Scholar 

  21. Vityaz’, P.A., Il’yushchenko, A.F., and Kheifets, M.A., Tekhnologii konstruktsionnykh nanostrukturnykh materialov i pokrytii, (Nanostructured Structural Materials and Coatings Technologies), Vityaz, P.A. and Solntsev, K.A., Eds., Minsk: Belaruskaya Navuka, 2011.

  22. Kolmakov, A.G., Use of system approach conceptions in the study of deformation and rupture of metallic materials, Nelineinyi Mir, 2006, vol. 4, p. 126.

    Google Scholar 

  23. Zabolotnyi, V.T., Goncharenko, B.A., Kolmakov, A.G., and Sevost’yanov, M.A., Promising one-dimensional nanocomposites for biomedical articles used in endovascular surgery, Materialy konf. i seminarov po nauchnym napravleniyam programmy “Fundamental’nye nauki — medicine” v 2010 godu (Proc. Conf. and Workshops in the Scientific Areas of the Program “Fundamental Sciences for Medicine” in 2010), Moscow, 2010, p. 233.

    Google Scholar 

  24. Akishin, A.I., Bondarenko, G.G., Bykov, D.V., et al., Fizika vozdeistviya kontsentrirovannykh potokov energii na materialy (Physics of the Action of Concentrated Energy Fluxes on Materials), Moscow: UNTs DO, 2004.

    Google Scholar 

  25. Zabolotnyi, V.T., Ionnoe peremeshivanie v tverdykh telakh (Ion Mixing in Solids), Moscow: Mosk. Gos. Inst. Elektroniki i Matematiki, 1997.

    Google Scholar 

  26. Starostin, E.E. and Kolmakov, A.G., Multifractal description of the topographic structure of coatings obtained by thermal evaporation in a vacuum, Fiz. Khim. Obrab. Mater., 1998, no. 5, p. 38.

    Google Scholar 

  27. Val’dner, V.O., Zabolotnyi, V.T., Svitov, V.I., and Starostin, E.E., Topography of coatings obtained by ion-atom deposition, Fiz. Khim. Obrab. Mater., 1996, no. 5, p. 51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Nasakina.

Additional information

Original Russian Text © E.O. Nasakina, A.S. Baikin, M.A. Sevost’yanov, A.G. Kolmakov, V.T. Zabolotnyi, K.A. Solntsev, 2013, published in Khimicheskaya Tekhnologiya, 2013, Vol. 14, No. 1, pp. 14–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasakina, E.O., Baikin, A.S., Sevost’yanov, M.A. et al. Properties of nanostructured titanium nickelide and composite based on it. Theor Found Chem Eng 48, 477–486 (2014). https://doi.org/10.1134/S0040579514040071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579514040071

Keywords

Navigation