Skip to main content
Log in

Elliptic families of solutions of the constrained Toda hierarchy

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study elliptic families of solutions of the recently introduced constrained Toda hierarchy, i.e., solutions that are elliptic functions of some linear combination of the hierarchical times. Equations of motion for poles of such solutions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ueno and K. Takasaki, “Toda lattice hierarchy,” in: Group Representations and Systems of Differential Equations (University of Tokyo, Japan, December 20–27, 1982, Advanced Studies in Pure Mathematics, Vol. 4, K. Okamoto, ed.), North-Holland, Amsterdam (1984), pp. 1–95.

    Google Scholar 

  2. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations,” in: Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13–16, 1981, M. Jimbo and T. Miwa, eds.), World Sci., Singapore (1983), pp. 39–119.

    Google Scholar 

  3. M. Jimbo and T. Miwa, “Soliton equations and infinite dimensional Lie algebras,” Publ. RIMS, Kyoto Univ., 19, 943–1001 (1983).

    Article  Google Scholar 

  4. I. Krichever and A. Zabrodin, “Constrained Toda hierarchy and turning points of the Ruijsenaars– Schneider model,” Lett. Math. Phys., 112, 23, 26 pp. (2022); arXiv: 2109.05240.

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Airault, H. P. McKean, and J. Moser, “Rational and elliptic solutions of the Korteweg–De Vries equation and a related many-body problem,” Commun. Pure Appl. Math., 30, 95–148 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  6. I. M. Krichever, “Rational solutions of the Kadomtsev–Petviashvili equation and integrable systems of \(N\) particles on a line,” Funct. Anal. Appl., 12, 59–61 (1978).

    Article  Google Scholar 

  7. D. V. Choodnovsky and G. V. Choodnovsky, “Pole expansions of nonlinear partial differential equations,” Nuovo Cimento B, 40, 339–353 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Calogero, “Solution of the one-dimensional \(N\)-body problems with quadratic and/or inversely quadratic pair potentials,” J. Math. Phys., 12, 419–436 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  9. F. Calogero, “Exactly solvable one-dimensional many-body problems,” Lett. Nuovo Cimento, 13, 411–416 (1975).

    Article  MathSciNet  Google Scholar 

  10. J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations,” Adv. Math., 16, 197–220 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  11. M. A. Olshanetsky and A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras,” Phys. Rep., 71, 313–400 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  12. I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles,” Funct. Anal. Appl., 14, 282–290 (1980).

    Article  Google Scholar 

  13. I. M. Krichever and A. V. Zabrodin, “Spin generalization of the Ruijsenaars–Schneider model, the non-Abelian Toda chain, and representations of the Sklyanin algebra,” Russian Math. Surveys, 50, 1101–1150 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Zabrodin, “Elliptic solutions to integrable nonlinear equations and many-body systems,” J. Geom. Phys., 146, 103506, 26 pp. (2019); arXiv: 1905.11383.

    Article  MathSciNet  Google Scholar 

  15. S. N. M. Ruijsenaars and H. Schneider, “A new class of integrable systems and its relation to solitons,” Ann. Phys., 170, 370–405 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  16. S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities,” Commun. Math. Phys., 110, 191–213 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. A. Akhmetshin, Yu. S. Vol’vovskii, and I. M. Krichever, “Elliptic families of solutions of the Kadomtsev–Petviashvili equation and the field elliptic Calogero–Moser system,” Funct. Anal. Appl., 36, 253–266 (2002).

    Article  MathSciNet  Google Scholar 

  18. A. Zabrodin and A. Zotov, “Field analogue of the Ruijsenaars–Schneider model,” JHEP, 2022, 023, 51 pp. (2022); arXiv: 2107.01697.

    Article  Google Scholar 

  19. T. Takebe, “Toda lattice hierarchy and conservation laws,” Commun. Math. Phys., 129, 281–318 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  20. T. Takebe, Lectures on Dispersionless Integrable Hierarchies (Lecture Notes, Vol. 2), Research Center for Mathematical Physics, Rikkyo Universty, Tokyo, Japan (2014).

    Google Scholar 

  21. I. Krichever and A. Zabrodin, “Kadomtsev–Petviashvili turning points and CKP hierarchy,” Commun. Math. Phys., 386, 1643–1683 (2021); arXiv: 2012.04482.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This work has been funded within the framework of the HSE University Basic Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zabrodin.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 213, pp. 57–64 https://doi.org/10.4213/tmf10260.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabrodin, A.V. Elliptic families of solutions of the constrained Toda hierarchy. Theor Math Phys 213, 1362–1368 (2022). https://doi.org/10.1134/S0040577922100051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922100051

Keywords

Navigation