Skip to main content
Log in

Gibbs measures for the HC Blume–Capel model with countably many states on a Cayley tree

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the Blume–Capel model with a countable set \(\mathbb Z\) of spin values and a force \(J\in \mathbb R\) of interaction between the nearest neighbors on a Cayley tree of order \(k\geq 2\). The following results are obtained. Let \(\theta=e^{-J/T}\), \(T>0\), be the temperature. For \(\theta\geq 1\), there exist no translation invariant Gibbs measures or \(2\)-periodic Gibbs measures. For \(0<\theta< 1\), we prove the uniqueness of a translation-invariant Gibbs measure. Let \(\Theta=\sum_i\theta^{(k+1)i^2}\) and \(\Theta_\mathrm{cr}(k)=k^k/(k-1)^{k+1}\). If \(0<\Theta\leq\Theta_\mathrm{cr}\), then there exists exactly one \(2\)-periodic Gibbs measure that is translation invariant. For \(\Theta>\Theta_\mathrm{cr}\), there exist exactly three \(2\)-periodic Gibbs measures, one of which is a translation-invariant Gibbs measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. F. Henning and C. Külske, “Coexistence of localized Gibbs measures and delocalized gradient Gibbs measures on trees,” Ann. Appl. Probab., 31, 2284–2310 (2021).

    Article  MathSciNet  Google Scholar 

  2. S. Buchholz, “Phase transitions for a class of gradient fields,” Probab. Theory Related Fields, 179, 969–1022 (2021).

    Article  MathSciNet  Google Scholar 

  3. F. Henning and C. Külske, “Existence of Gradient Gibbs Measures on Regular Trees which are not Translation Invariant,” arXiv: 2102.11899.

  4. H. O. Georgii, Gibbs Measures and Phase Transitions (De Gruyter Studies in Mathematics, Vol. 9), Walter de Gruyter, Berlin (1988).

    Book  Google Scholar 

  5. G. Brightwell, O. Häggström, and P. Winkler, “Non monotonic behavior in hard-core and Widom–Rowlinson models,” J. Statist. Phys., 94, 415–435 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  6. F. P. Kelly, “Stochastic models of computer communication systems. With discussion,” J. R. Statist. Soc. Ser., 47, 379–395 (1985).

    MATH  Google Scholar 

  7. A. E. Mazel and Yu. M. Suhov, “Random surfaces with two-sided constraints: An application of the theory of dominant ground states,” J. Statist. Phys., 64, 111–134 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  8. U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore (2013).

    Book  Google Scholar 

  9. R. M. Khakimov and M. T. Makhammadaliev, “Uniqueness and nonuniqueness conditions for weakly periodic Gibbs measures for the hard-core model,” Theoret. and Math. Phys., 204, 1059–1078 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  10. G. R. Brightwell and P. Winkler, “Graph homomorphisms and phase transitions,” J. Combin. Theory Ser. B, 77, 221–262 (1999).

    Article  MathSciNet  Google Scholar 

  11. N. N. Ganikhodjaev and U. A. Rozikov, “The Potts model with countable set of spin values on a Cayley tree,” Lett. Math. Phys., 75, 99–109 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  12. Z. Ye, “Models of gradient type with sub-quadratic actions,” J. Math. Phys., 60, 073304, 26 pp. (2019); arXiv: 1807.00258.

    Article  ADS  MathSciNet  Google Scholar 

  13. F. Henning, C. Külske, A. Le Ny, and U. A. Rozikov, “Gradient Gibbs measures for the SOS model with countable values on a Cayley tree,” Electron. J. Probab., 24, 104, 23 pp. (2019).

    Article  MathSciNet  Google Scholar 

  14. E. N. M. Cirillo and E. Olivieri, “Metastabilty and nucleation for the Blume–Capel model. Different mechanisms of transition,” J. Statist. Phys., 83, 473–554 (1996); arXiv: hep-th/9505055.

    Article  ADS  MathSciNet  Google Scholar 

  15. P. E. Theodorakis and N. J. Fytas, “Monte Carlo study of the triangular Blume–Capel model under bond randomness,” Phys. Rev. E, 86, 011140, 9 pp. (2012).

    Article  ADS  Google Scholar 

  16. S. Kim, “Metastability of Blume–Capel model with zero chemical potential and zero external field,” J. Statist. Phys., 184, 33, 41 pp. (2021).

    Article  ADS  MathSciNet  Google Scholar 

  17. N. Khatamov and R. Khakimov, “Translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree,” J. Math. Phys. Anal. Geom., 15, 239–255 (2019).

    MathSciNet  MATH  Google Scholar 

  18. N. M. Khatamov, “Translation-invariant extreme Gibbs measures for the Blume–Capel model with a wand on a Cayley tree,” Ukr. Math. J., 72, 623–641 (2020).

    Article  Google Scholar 

  19. N. M. Khatamov, “Holliday junctions in the Blume–Capel model of DNA,” Theoret. and Math. Phys., 206, 383–390 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  20. N. M. Khatamov, “Holliday junctions in the HC Blume–Capel model in ‘one case’ on DNA,” Nanosytems: Physics, Chemistry, Mathematics, 12, 563–568 (2021).

    MATH  Google Scholar 

  21. A. N. Shiryaev, Probability (Graduate Texts in Mathematics, Vol. 95), Springer, New York (1996).

    Book  Google Scholar 

  22. D. Galvin, F. Martinelli, K. Ramanan, and P. Tetali, “The multistate hard core model on a regular tree,” SIAM J. Discrete Math., 25, 894–915 (2011).

    Article  MathSciNet  Google Scholar 

  23. F. Martinelli, A. Sinclair, and D. Weitz, “Fast mixing for independent sets, coloring and other models on trees,” Random Struct. Algor., 31, 134–172 (2007).

    Article  MathSciNet  Google Scholar 

  24. H. Kesten, “Quadratic transformations: A model for population growth. I,” Adv. Appl. Probab., 2, 1–82 (1970).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. A. Rozikov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 211, pp. 491–501 https://doi.org/10.4213/tmf10245.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganikhodzhaev, N.N., Rozikov, U.A. & Khatamov, N.M. Gibbs measures for the HC Blume–Capel model with countably many states on a Cayley tree. Theor Math Phys 211, 856–865 (2022). https://doi.org/10.1134/S0040577922060071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922060071

Keywords

Navigation