Skip to main content
Log in

Influence of anisotropic rheology on wave processes in sea ice

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Burgers model is adapted to the description of viscoelastic rheology of ice and used for the investigation of dispersion and attenuation of waves propagating in a water layer beneath solid columnar ice. Rheological constants describing the ice properties in the horizontal direction are obtained from the experiments with cores of natural columnar sea ice. Energy dissipation in the boundary layer under the ice is regarded as an additional mechanism of wave attenuation. The dependence of the wave attenuation coefficient on the wavelength is investigated. We find that viscous properties of ice are most important for the attenuation of waves with periods less 10 s. Dissipation of wave energy in the boundary layer under the ice dominates as the wave period increases from 10 s to 30 s. Long infragravity waves with periods 20–30 s can propagate over long distances with insignificant attenuation when turbulence in the boundary layer under the ice is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. https://www.interpribor.ru/ultrasonic-flaw-detector-the-pulsar-2.2

References

  1. P. Wadhams, Ice in the Ocean, Gordon and Breach, Amsterdam (2000).

    Google Scholar 

  2. C. O. Collins, W. E. Rogers, A. Marchenko, and A. V. Babanin, “In situ measurements of an energetic wave event in the Arctic marginal ice zone,” Geophys. Res. Lett., 42, 1863–1870 (2015).

    Article  ADS  Google Scholar 

  3. V. N. Smirnov, Dynamic Processes in Sea Ice [in Russian], Gidrometeoizdat, St. Petersburg (1996).

    Google Scholar 

  4. V. A. Squire, “A fresh look at how ocean waves and sea ice interact,” Phil. Trans. Roy. Soc. A, 376, 20170342, 13 pp. (2018).

    Article  ADS  Google Scholar 

  5. S. Timoshenko and S. Woinovsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York (1959).

    Google Scholar 

  6. G. W. Timco and W. F. Weeks, “A review of the engineering properties of sea ice,” Cold Reg. Sci. Tech., 60, 107–129 (2010).

    Article  Google Scholar 

  7. E. M. Schulson and P. Duval, Creep and Fracture of Ice, Cambridge Univ. Press, Cambridge (2009).

    Book  Google Scholar 

  8. K. P. Tyshko, N. V. Cherepanov, and V. I. Fedotov, Crystal Structure of Sea Ice Cover [in Russian], Gidrometeoizdat, St. Petersburg (2000).

    Google Scholar 

  9. A. Marchenko, E. Karulin, and P. Chistyakov, “Experimental investigation of viscous elastic properties of columnar sea ice,” in: Proceedings of the 26th International Conference on Port and Ocean Engineering under Arctic Conditions (Moscow, June 15–18, 2021), pp. POAC21-043 (published online).

    Google Scholar 

  10. N. K. Sinha, “Short-term rheology of polycrystalline ice,” J. Glaciology, 21, 457–474 (1978).

    Article  ADS  Google Scholar 

  11. D. M. Cole, “On the physical basis for the creep of ice: the high temperature regime,” J. Glaciology, 66, 401–414 (2020).

    Article  ADS  Google Scholar 

  12. A. V. Marchenko, E. B. Karulin, and P. V. Chistyakov, “Eksperimental’noe opredelenie neuprugikh kharakteristik morskogo ledyanogo pokrova [in Russian],” in: Sovremennye podkhody i perspektivnye tekhnologii v proektakh osvoeniya neftegazovykh mestorozhdeniy rossiyskogo shel’fa, Nauchno-tekhnicheskiy sbornik (Vesti gazovoy nauki, Vol. 3(45), M. N. Mansurov and D. A. Onishchenko, eds.), Gazprom VNIIGAZ, Vidnoe, Moskovskaya obl. (2020), pp. 141–150.

    Google Scholar 

  13. E. L. Shenderov, “Sound propagation through transversally-isotropic plate [in Russian],” Akusticheskij Zhurnal, 30, 122–129 (1984).

    Google Scholar 

  14. H. H. G. Jellinek and R. Brill, “Viscoelastic properties of ice,” J. Appl. Phys., 27, 1198–1209 (1956).

    Article  ADS  Google Scholar 

  15. K. F. Voitkovskii, Mechanical Properties of Ice, USSR Acad. Sci., Moscow (1960).

    Google Scholar 

  16. G. D. Ashton, River and Lake Ice Engineering, Water Resources Publ., Littleton, CO (1986).

    Google Scholar 

  17. G. Kolsky, Stress Waves in Solids, Dover, New York (2003).

    MATH  Google Scholar 

  18. M. Caster, “A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic instability,” J. Fluid Mech., 14, 222–224 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  19. B. D. Annin, “A transversally isotropic elastic model of geomaterials,” J. Appl. Industr. Math., 4, 299–308 (2010).

    Article  Google Scholar 

  20. A. Marchenko, E. Karulin, and P. Chistyakov, “Eksperimental’noe opredelenie uprugikh kharakteristik morskogo ledyanogo pokrova [in Russian],” in: Sovremennye podkhody i perspektivnye tekhnologii v proektakh osvoeniya neftegazovykh mestorozhdeniy rossiyskogo shel’fa, Nauchno-tekhnicheskiy sbornik (Vesti gazovoy nauki, Vol. 3(45), M. N. Mansurov and D. A. Onishchenko, eds.), Gazprom VNIIGAZ, Vidnoe, Moskovskaya obl. (2020), pp. 129–140.

    Google Scholar 

  21. S. Nanthikesan and S. S. Sunder, “Anisotropic elasticity of polycrystalline ice Ih,” Cold Reg. Sci. Tech., 22, 149–169 (1994).

    Article  Google Scholar 

  22. A. Marchenko, P. Wadhams, C. Collins, J. Rabault, and M. Chumakov, “Wave-ice interaction in the North-West Barents Sea,” Appl. Ocean Res., 90, 101861 (2019).

    Article  Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of theoretical physics, Vol. 6: Fluid mechanics, 2nd ed., Pergamon Press, Oxford (1987).

    Google Scholar 

  24. A. V. Marchenko, V. V. Gorbatsky, and I. D. Turnbull, “Characteristics of under-ice ocean currents measured during wave propagation events in the Barents Sea,” in: Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Conditions (Trondheim, Norway, 14–18 June, 2015), pp. POAC15-00171 (published online).

    Google Scholar 

  25. J. J. Voermans, Q. Liu, A. Marchenko, J. Rabault, K. Filchuk, I. Ryzhov, P. Heil, T. Waseda, T. Nose, T. Kodaira, J. Li, and A. V. Babanin, “Wave dispersion and dissipation in landfast ice: comparison of observations against models,” The Cryosphere, 15, 5557–5575 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Research Council of Norway (projects IntPart, program Arctic Offshore and Coastal Engineering in Changing Climate, Petromaks-2 program Dynamics of Floating Ice, SSG A method to identify sea-ice breakup: a pilot study).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Marchenko.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 211, pp. 264–280 https://doi.org/10.4213/tmf10242.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenko, A.V. Influence of anisotropic rheology on wave processes in sea ice. Theor Math Phys 211, 665–678 (2022). https://doi.org/10.1134/S0040577922050075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922050075

Keywords

Navigation