Skip to main content
Log in

Multitime propagators and the consistency condition

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

For a nonrelativistic quantum system of \(N\) particles, the wave function is a function of \(3N\) spatial coordinates and one temporal coordinate. The relativistic generalization of this wave function is a function of \(N\) time variables known as the multitime wave function, and its evolution is described by \(N\) Schrödinger equations, one for each time variable. To guarantee the existence of a nontrivial common solution of these \(N\) equations, the \(N\) Hamiltonians must satisfy a compatibility condition known as the integrability condition. In this work, the integrability condition is expressed in terms of Lagrangians. The time evolution of a wave function with \(N\) time variables is derived in Feynman’s picture of quantum mechanics. However, these evolutions are compatible if and only if the \(N\) Lagrangians satisfy a certain relation called the consistency condition, which can be expressed in terms of Wilson line. As a consequence of this consistency condition, the evolution of the wave function gives rise to a key feature called the “path-independence” property on the space of time variables. This suggests that one must consider all possible paths not only on the space of dependent variables (spatial variables) but also on the space of independent variables (temporal variables). Geometrically, this consistency condition can be regarded as a zero-curvature condition and the multitime evolutions can be treated as compatible parallel transport processes on the flat space of time variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. We set \(\hbar=1\) throughout the text.

  2. For simplicity, we consider only two time variables.

  3. This equation was first derived in a different context, that of an integrable 1-dimensional many-body system [14], where it also expresses a consistency condition.

  4. This terminology also arises in the context of integrable systems [18].

References

  1. P. A. M. Dirac, “Relativistic quantum mechanics,” Proc. Roy. Soc. London Ser. A, 136, 453–464 (1932).

    ADS  MATH  Google Scholar 

  2. L. Nickel, On the dynamics of multi-time systems (Dissertation an der Fakultät für Mathematik, Informatik und Statistik), München, Ludwig Maximilians Universität (2019).

    Google Scholar 

  3. D. A. Deckert and L. Nickel, “Consistency of multi-time Dirac equations with general interaction potentials,” J. Math. Phys., 57, 072301, 14 pp. (2016); arXiv: 1603.02538.

    Article  ADS  MathSciNet  Google Scholar 

  4. S. P. Petrat, Evolution equations for multi-time wave functions (Master’s thesis), Rutgers, State University of New Jersey, New Brunswick, NJ (2010).

    Google Scholar 

  5. S. Petrat and R. Tumulka, “Multi-time Schrödinger equations cannot contain interaction potentials,” J. Math. Phys., 55, 032302, 34 pp. (2014); arXiv: 1308.1065.

    Article  Google Scholar 

  6. S. Petrat and R. Tumulka, “Multi-time equations, classical and quantum,” Proc. Roy. Soc. Lond. Ser. A, 470, 20130632, 6 pp. (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  7. S. Petrat and R. Tumulka, “Multi-time wave functions for quantum field theory,” Ann. Phys., 345, 17–54 (2014); arXiv: 1309.0802.

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Petrat and R. Tumulka, “Multi-time formulation of pair creation,” J. Phys. A: Math. Theor., 47, 112001, 11 pp. (2014); arXiv: 1401.6093.

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Lienert, S. Petrat, and R. Tumulka, “Multi-time wave functions,” J. Phys.: Conf. Ser., 880, 012006, 17 pp. (2014).

    MATH  Google Scholar 

  10. G. Longhi, L. Lusanna, and J. M. Pons, “On the many-time formulation of classical particle dynamics,” J. Math. Phys., 30, 1893–1912 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, Reading, MA (1994).

    Google Scholar 

  12. S. Tomonaga, “On a relativistically invariant formulation of the quantum theory of wave fields,” Progr. Theor. Phys., 1, 27–42 (1946).

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Lill, L. Nickel, and R. Tumulka, “Consistency proof for multi-time Schrödinger equations with particle creation and ultraviolet cut-off,” Ann. H. Poincaré, 22, 1887–1936 (2021).

    Article  Google Scholar 

  14. S. Yoo-Kong, S. Lobb, and F. Nijhoff, “Discrete-time Calogero–Moser system and Lagrangian 1-form structure,” J. Phys. A: Math. Theor., 44, 365203, 39 pp. (2011).

    Article  MathSciNet  Google Scholar 

  15. J. P. Fortney, A Visual Introduction to Differential Forms and Calculus on Manifolds, Birkhäuser, Cham (2018).

    Book  Google Scholar 

  16. R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (2010).

    MATH  Google Scholar 

  17. D. Walter and R. Martin, Classical and Quantum Dynamics: From Classical Paths to Path Integrals, Springer Nature Switzerland, Cham (2020).

    MATH  Google Scholar 

  18. S. D. King and F. W. Nijhoff, “Quantum variational principle and quantum multiform structure: The case of quadratic Lagrangians,” Nucl. Phys. B, 947, 114686, 39 pp. (2017).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Pichet Vanichchapongjaroen for the valuable discussion.

Funding

S. Sungted is supported by the Development and Promotion of Science and Technology Talents Project (DPST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sungted.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 210, pp. 229-249 https://doi.org/10.4213/tmf10146.

A.

Here, we show the derivation of the transition from \((t_1,t_2)\) to \((\hat t_1,\hat t_2)\), as shown in Fig. 5a:

$$\langle\hat q_1,\hat q_2|\Phi(\hat t_1,\hat t_2)\rangle=\langle\hat q_1,\hat q_2|U'_2U'_1U_2U_1|\Phi(t_1,t_2)\rangle,$$
and
$$\begin{aligned} \, \Phi&(\hat q_1^{},\hat q_2^{},\hat t_1^{},\hat t_2^{})= \iint\langle\hat q_1^{},\hat q_2^{}|U'_2U'_1U_2^{}U_1^{}|q_1^{},q_2^{}\rangle\langle q_2^{},q_1^{}|\Phi(t_1^{},t_2^{})\rangle\,dq_1^{}\,dq_2^{}= \\ &=\iint\langle\hat q_1^{},\hat q_2^{}|U'_2U'_1U_2^{}U_1^{}|q_1^{},q_2^{}\rangle\Phi(q_1^{},q_2^{},t_1^{},t_2^{})\,dq_1^{}\,dq_2^{}= \\ &=\iiiint \langle\hat q_1^{},\hat q_2^{}|U'_2U'_1U_2^{}|\tilde q_1^{},\tilde q_2^{}\rangle \langle\tilde q_2^{},\tilde q_1^{}|U_1^{}|q_1^{},q_2^{}\rangle\Phi(q_1^{},q_2^{},t_1^{},t_2^{})\,d\tilde q_1^{}\,d\tilde q_2^{}\,dq_1^{}\,dq_2^{}\,= \\ &=\iiiint \langle\hat q_1^{},\hat q_2^{}|U'_2U'_1U_2^{}|\tilde q_1^{},\tilde q_2^{}\rangle \langle\tilde q_1^{}|U_1^{}|q_1^{}\rangle \langle\tilde q_2^{}|q_2^{}\rangle\Phi(q_1^{},q_2^{},t_1^{},t_2^{})\,d\tilde q_1^{}\,d\tilde q_2^{}\,dq_1^{}\,dq_2^{}\,= \\ &=\iiiint \langle\hat q_1^{},\hat q_2^{}|U'_2U'_1U_2^{}|\tilde q_1^{},\tilde q_2^{}\rangle \langle\tilde q_1^{}|U_1^{}|q_1^{}\rangle\delta(\tilde q_2^{}-q_2^{})\Phi(q_1^{},q_2^{},t_1^{},t_2^{})\,d\tilde q_1^{}\,d\tilde q_2^{}\,dq_1^{}\,dq_2^{}\,= \\ &=\iiiint\!\!\!\iint \langle\hat q_1^{},\hat q_2^{}|U'_2U'_1|q'_1,q'_2\rangle \langle q'_2,q'_1|U_2^{}|\tilde q_1^{},\tilde q_2^{}\rangle \langle\tilde q_1^{}|U_1^{}|q_1^{}\rangle\times{} \\ &\kern30pt\times\delta(\tilde q_2-q_2)\Phi(q_1,q_2,t_1,t_2)\,dq'_1\,dq'_2\,d\tilde q_1^{}\,d\tilde q_2^{}\,dq_1^{}\,dq_2^{}= \\ &=\iiiint\!\!\!\iint \langle\hat q_1^{},\hat q_2^{}|U'_2U'_1|q'_1,q'_2\rangle \langle q'_2|U_2^{}|\tilde q_2^{}\rangle \langle q'_1|\tilde q_1^{}\rangle\langle\tilde q_1^{}|U_1^{}|q_1^{}\rangle\times{} \\ &\kern30pt\times\delta(\tilde q_2-q_2)\Phi(q_1,q_2,t_1,t_2)\,dq'_1\,dq'_2\,d\tilde q_1^{}\,d\tilde q_2^{}\,dq_1^{}\,dq_2^{}= \\ &=\iiiint\!\!\!\iint \langle\hat q_1^{},\hat q_2^{}|U'_2U'_1|q'_1,q'_2\rangle \langle q'_2|U_2^{}|\tilde q_2^{}\rangle\delta(q'_1-\tilde q_1^{})\langle\tilde q_1^{}|U_1^{}|q_1^{}\rangle\times{} \\ &\kern30pt\times\delta(\tilde q_2-q_2)\Phi(q_1,q_2,t_1,t_2)\,dq'_1\,dq'_2\,d\tilde q_1^{}\,d\tilde q_2^{}\,dq_1^{}\,dq_2^{}= \\ &=\iiiint\!\!\!\iiiint \langle\hat q_1^{},\hat q_2^{}|U'_2|\bar q_1^{},\bar q_2^{}\rangle \langle\bar q_1^{},\bar q_2^{}|U'_1|q'_1,q'_2\rangle\langle q'_2|U_2^{}|\tilde q_2^{}\rangle\times{} \\ &\kern30pt\times\delta(q'_1-\tilde q_1^{})\langle\tilde q_1^{}|U_1^{}|q_1^{}\rangle \delta(\tilde q_2^{}-q_2^{})\Phi(q_1^{},q_2^{},t_1^{},t_2^{}) \,d\bar q_1^{}\,d\bar q_2^{}\,dq'_1\,dq'_2\,d\tilde q_1^{}\,d\tilde q_2^{}\,dq_1^{}\,dq_2^{}= \\ &=\iiiint\!\!\!\iiiint \langle\hat q_1^{},\hat q_2^{}|U'_2|\bar q_1^{},\bar q_2^{}\rangle \langle\bar q_1^{}|U'_1|q'_1\rangle\langle\bar q_2^{}|q'_2\rangle\langle q'_2|U_2^{}|\tilde q_2^{}\rangle\times{} \\ &\kern30pt\times\delta(q'_1-\tilde q_1^{})\langle\tilde q_1^{}|U_1^{}|q_1^{}\rangle \delta(\tilde q_2^{}-q_2^{})\Phi(q_1^{},q_2^{},t_1^{},t_2^{}) \,d\bar q_1^{}\,d\bar q_2^{}\,dq'_1\,dq'_2\,d\tilde q_1^{}\,d\tilde q_2^{}\,dq_1^{}\,dq_2^{}= \\ &=\iiiint\!\!\!\iiiint \langle\hat q_1^{},\hat q_2^{}|U'_2|\bar q_1^{},\bar q_2^{}\rangle \langle\bar q_1^{}|U'_1|q'_1\rangle\delta(\bar q_2^{}{-}q'_2)\langle q'_2|U_2^{}|\tilde q_2^{}\rangle\times{} \\ &\kern30pt\times\delta(q'_1-\tilde q_1^{})\langle\tilde q_1^{}|U_1^{}|q_1^{}\rangle \delta(\tilde q_2^{}-q_2^{})\Phi(q_1^{},q_2^{},t_1^{},t_2^{}) \,d\bar q_1^{}\,d\bar q_2^{} \,d\bar q_1^{}\,d\bar q_2^{}\,dq'_1\,dq'_2\,d\tilde q_1^{}\,d\tilde q_2^{}\,dq_1^{}\,dq_2^{}= \\ &=\iiiint\!\!\!\iiiint \langle\hat q_2^{}|U'_2|\rangle\langle\hat q_1^{}|\bar q_1^{}\rangle \langle\bar q_1^{}|U'_1|q'_1\rangle\delta(\bar q_2^{}{-}q'_2)\langle q'_2|U_2^{}|\tilde q_2^{}\rangle\times{} \\ &\kern30pt\times\delta(q'_1-\tilde q_1^{})\langle\tilde q_1^{}|U_1^{}|q_1^{}\rangle \delta(\tilde q_2^{}-q_2^{})\Phi(q_1^{},q_2^{},t_1^{},t_2^{}) \,d\bar q_1^{}\,d\bar q_2^{}\,dq'_1\,dq'_2\,d\tilde q_1^{}\,d\tilde q_2^{}\,dq_1^{}\,dq_2^{}= \\ &=\iiiint \langle\hat q_2^{}|U'_2|\bar q_2^{}\rangle \int\delta(\hat q_1^{}-\bar q_1^{}\langle\bar q_1^{}|U'_1|q'_1\rangle \,d\bar q_1^{} \int\delta(\bar q_2^{}-q'_2)\langle q'_2|U_2^{}|\tilde q_2^{}\rangle\,dq'_2\times{} \\ &\kern38pt\times\int \delta(q'_1-\tilde q_1^{})\langle\tilde q_1^{}|U_1^{}|q_1^{}\rangle\,dq'_1 \int \delta(\tilde q_2^{}-q_2^{})\Phi(q_1^{},q_2^{},t_1^{},t_2^{})\,d\tilde q_2^{}\,d\bar q_2^{}\,d\tilde q_1^{}\,dq_1^{}\,dq_2^{}= \\ &=\iiiint \langle\hat q_2^{}|U'_2|\bar q_2^{}\rangle \langle\bar q_2^{}|U_2^{}|q_2^{}\rangle \langle\hat q_1^{}|U'_1|\tilde q_1^{}\rangle \langle\tilde q_1^{}|U_1^{}|q_1^{}\rangle\Phi(q_1^{},q_2^{},t_1^{},t_2^{})\,d\bar q_2^{}\,d\tilde q_1^{}\,dq_1^{}\,dq_2^{}= \\ &=\iiint \langle\hat q_2^{}|U'_2(\hat t_2^{}-t'_2)|\bar q_2^{}\rangle\langle\bar q_2^{}|U_2^{}(t'_2-t_2^{})|q_2^{}\rangle\,d\bar q_2^{}\,\times{}\ \\ &\kern38pt\times\int \langle\hat q_1^{}|U'_1(\hat t_1^{}-t'_1)|\tilde q_1^{}\rangle \langle\tilde q_1|U_1(t'_1-t_1^{})|q_1^{}\rangle\,d\tilde q_1^{}\, \Phi(q_1^{},q_2^{},t_1^{},t_2^{})\,dq_1^{}\,dq_2^{}= \\ &=\iiint K_2^{}(\hat q_2^{},\hat t_2^{};\bar q_2^{},t'_2)K_2^{}(\bar q_2^{},t'_2;q_2^{},t_2^{})\,d\bar q_2^{} \times{} \\ &\kern38pt\times\int K_1^{}(\hat q_1^{},\hat t_1^{};\tilde q_1^{},t'_1)K_1^{}(\tilde q_1^{}t'_1;q_1^{},t_1^{})\,d\tilde q_1^{}\, \Phi(q_1,q_2,t_1,t_2)\,dq_1^{}\,dq_2^{}\,. \end{aligned}$$
This proves expression (3.30) for the counter-clockwise transition in a two-time system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sungted, S., Yoo-Kong, S. Multitime propagators and the consistency condition. Theor Math Phys 210, 198–215 (2022). https://doi.org/10.1134/S0040577922020040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922020040

Keywords

Navigation