Skip to main content
Log in

Mirror map for Fermat polynomials with a nonabelian group of symmetries

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study Landau–Ginzburg orbifolds \((f,G)\) with \(f=x_1^n+\cdots+x_N^n\) and \(G=S\ltimes G^d\), where \(S\subseteq S_N\) and \(G^d\) is either the maximal group of scalar symmetries of \(f\) or the intersection of the maximal diagonal symmetries of \(f\) with \(SL_N(\mathbb{C})\). We construct a mirror map between the corresponding phase spaces and prove that it is an isomorphism restricted to a certain subspace of the phase space when \(n=N\) is a prime number. When \(S\) satisfies the parity condition of Ebeling–Gusein-Zade, this subspace coincides with the full space. We also show that two phase spaces are isomorphic for \(n=N=5\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Intriligator and C. Vafa, “Landau–Ginzburg orbifolds,” Nucl. Phys. B, 339, 95–120 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  2. C. Vafa, “String vacua and orbifoldized \(LG\) models,” Modern Phys. Lett. A, 4, 1169–1185 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  3. E. Witten, “Phases of \(N=2\) theories in two dimensions,” Nuclear Phys. B, 403, 159–222 (1993); arXiv: hep-th/9301042.

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Shklyarov, “On Hochschild invariants of Landau–Ginzburg orbifolds,” Adv. Theor. Math. Phys., 24, 189–258 (2020).

    Article  MathSciNet  Google Scholar 

  5. H. Fan, T. Jarvis, and Y. Ruan, “The Witten equation, mirror symmetry, and quantum singularity theory,” Ann. Math. (2), 178, 1–106 (2013).

    Article  MathSciNet  Google Scholar 

  6. N. Priddis, J. Ward, and M. M. Williams, “Mirror symmetry for nonabelian Landau–Ginzburg models,” SIGMA, 16, 059, 31 pp. (2020); arXiv: 1812.06200.

    MathSciNet  MATH  Google Scholar 

  7. P. Berglund and M. Henningson, “Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus,” Nucl. Phys. B, 433, 311–332 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Berglund and T. Hübsch, “A generalized construction of mirror manifolds,” Nucl. Phys. B, 393, 377–391 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Krawitz, “FJRW rings and Landau–Ginzburg mirror symmetry”; arXiv: 0906.0796.

  10. A. Francis, T. Jarvis, D. Johnson, and R. Suggs, “Landau–Ginzburg mirror symmetry for orbifolded Frobenius algebras,” in: String-Math 2011 (Proceedings of Symposia in Pure Mathematics, Vol. 85, J. Block, J. Distler, R. Donagi, E. Sharpe, eds.), AMS, Providence, RI (2012), pp. 333–353.

    Article  MathSciNet  Google Scholar 

  11. A. Basalaev and A. Takahashi, “Hochschild cohomology and orbifold Jacobian algebras associated to invertible polynomials,” J. Noncommut. Geom., 14, 861–877 (2020).

    Article  MathSciNet  Google Scholar 

  12. A. Basalaev, A. Takahashi, and E. Werner, “Orbifold Jacobian algebras for invertible polynomials,” arXiv: 1608.08962.

  13. A. Basalaev, A. Takahashi, and E. Werner, “Orbifold Jacobian algebras for exceptional unimodal singularities,” Arnold Math. J., 3, 483–498 (2017); arXiv: 1702.02739.

    Article  MathSciNet  Google Scholar 

  14. D. Mukai, “Nonabelian Landau–Ginzburg orbifolds and Calabi–Yau/Landau–Ginzburg correspondence,” arXiv: 1704.04889.

  15. W. Ebeling and S. M. Gusein-Zade, “A version of the Berglund–Hübsch–Henningson duality with non-abelian groups,” Int. Math. Res. Not., 2021, 12305–12329 (2019).

    Article  Google Scholar 

  16. W. Ebeling and S. M. Gusein-Zade, “Dual invertible polynomials with permutation symmetries and the orbifold Euler characteristic,” SIGMA, 16, 051, 15 pp. (2020); arXiv: 1907.11421.

    MathSciNet  MATH  Google Scholar 

  17. A. Basalaev and A. Ionov, “Hochschild cohomology of Fermat type polynomials with non-abelian symmetries,” arXiv: 2011.05937.

Download references

Acknowledgments

The authors are grateful to the anonymous referee for many important remarks.

Funding

The authors acknowledge partial support by the RSF (grant no. 19-71-00086) and by the International Laboratory of Cluster Geometry, HSE University (RF Government grant, agreement no. 075-15-2021-608 from 08.06.2021). In particular, the proof of Theorem 1 was obtained under the support of the RSF (grant no. 19-71-00086) and the proof of Theorem 2 was obtained under the support of the International Laboratory of Cluster Geometry, HSE University (RF Government grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Basalaev.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 209, pp. 205–223 https://doi.org/10.4213/tmf10104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basalaev, A.A., Ionov, A.A. Mirror map for Fermat polynomials with a nonabelian group of symmetries. Theor Math Phys 209, 1491–1506 (2021). https://doi.org/10.1134/S0040577921110015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921110015

Keywords

Navigation