Skip to main content
Log in

Noncommutative Kepler Dynamics: symmetry groups and bi-Hamiltonian structures

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Integrals of motion are constructed from noncommutative (NC ) Kepler dynamics, generating \(\mathrm{SO}(3)\), \(\mathrm{SO}(4)\), and \(\mathrm{SO}(1,3)\) dynamical symmetry groups. The Hamiltonian vector field is derived in action–angle coordinates, and the existence of a hierarchy of bi-Hamiltonian structures is highlighted. Then, a family of Nijenhuis recursion operators is computed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. M. Livio, The Golden Ratio. The Story of Phi, the World’s Most Astonishing Number, Broadway Books, New York (2003).

    MATH  Google Scholar 

  2. J. Zhou, “On geometry and symmetry of Kepler systems. I,” arXiv:1708.05504.

  3. J. R. Voelkel, Johannes Kepler and the New Astronomy (Oxford Portraits in Science), Oxford Univ. Press, New York (1999).

    Google Scholar 

  4. J. Kepler, New Astronomy, Cambridge Univ. Press, New York (1992).

    Google Scholar 

  5. J. Kepler, The Harmony of the World (Memoirs of the American Philosophical Society, Vol. 209), American Philosophical Society, Philadelphia, PA (1997).

    MATH  Google Scholar 

  6. J. B. Brackenridge, The Key to Newton’s Dynamics: The Kepler Problem and the Principia, UC Press, Berkeley, CA (1995).

    MATH  Google Scholar 

  7. W. Lenz, “Über den Bewegungsverlauf und die Quantenzustände des gestörten Keplerbewegung,” Z. Phys., 24, 197–207 (1924).

    Article  ADS  Google Scholar 

  8. W. Pauli, Jr., “Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik,” Z. Phys., 36, 336–363 (1926).

    Article  ADS  MATH  Google Scholar 

  9. V. Fock, “Zur Theorie des Wasserstoffatoms,” Z. Phys., 98, 145–154 (1935).

    Article  ADS  MATH  Google Scholar 

  10. V. Bargmann, “Zur Theorie des Wasserstoffatoms. Bemerkungen zur gleichnamigen Arbeit von V. Fock,” Z. Phys., 99, 576–582 (1936).

    Article  ADS  MATH  Google Scholar 

  11. M. Bander and C. Itzykson, “Group theory and the hydrogen atom (I),” Rev. Modern Phys., 38, 330–345 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Bander and C. Itzykson, “Group theory and the hydrogen atom (II),” Rev. Modern Phys., 38, 346–358 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  13. L. Hulthén, “Über die quantenmechanische Herleitung der Balmerterme”, Z. Phys., 86, 21–23 (1933).

    Article  ADS  MATH  Google Scholar 

  14. D. M. Fradkin, “Existence of the dynamic symmetries \(O_{4}\) and \(SU_{3}\) for all classical central potential problems,” Prog. Theor. Phys., 37, 798–812 (1967).

    Article  ADS  Google Scholar 

  15. H. Bacry, H. Ruegg, and J. M. Souriau, “Dynamical groups and spherical potentials in classical mechanics,” Commun. Math. Phys., 3, 323–333 (1966).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. G. Györgyi, “Kepler’s equation, Fock variables, Bacry’s generators and Dirac brackets,” Nuovo Cimento A, 53, 717–736 (1968).

    Article  ADS  Google Scholar 

  17. A. Guichardet, “Histoire d’un vecteur tricentenaire,” Gaz. Math., 117, 23–33 (2008).

    MathSciNet  MATH  Google Scholar 

  18. J. Moser, “Regularization of Kepler’s problem and the averaging method on a manifold,” Commun. Pure Appl. Math., 23, 609–636 (1970).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. T. Ligon and M. Schaaf, “On the global symmetry of the classical Kepler problem,” Rep. Math. Phys., 9, 281–300 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. D. E. Chang and J. E. Marsden, “Geometric derivation of Delaunay variables and geometric phases,” Celest. Mech. Dyn. Astron., 86, 185–208 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. Chenciner and R. Montgomery, “A remarkable periodic solution of the three-body problem in the case of equal masses,” Ann. Math., 152, 881–901 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. H. Cushman and J. J. Duistermaat, “A characterization of the Ligon–Schaaf regularization map,” Commun. Pure Appl., 50, 773–787 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Milnor, “On the geometry of the Kepler problem,” Amer. Math. Monthly, 90, 353–365 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  24. C.-M. Marle, “A property of conformally Hamiltonian vector fields; application to the Kepler problem,” J. Geom. Mech., 4, 181–206 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Vilasi, Hamiltonian Dynamics, World Sci., Singapore (2001).

    Book  MATH  Google Scholar 

  26. R. Liouville, “Sur le mouvement d’un corps solide pesant suspendu par l’un de ses points,” Acta Math., 20, 239–284 (1897).

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Poincaré, “Sur les quadratures mécaniques,” Bull. Astron., 16, 382–387 (1899).

    Google Scholar 

  28. F. Magri, “A simple model of the integrable Hamiltonian equation,” J. Math. Phys., 19, 1156–1162 (1978).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. I. M. Gel’fand and I. Ya. Dorfman, “The Schouten Bracket and Hamiltonian operators,” Funct. Anal. Appl., 14, 223–226 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Vilasi, “On the Hamiltonian structures of the Korteweg–de Vries and sine-Gordon theories,” Phys. Lett. B, 94, 195–198 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  31. S. De Filippo, G. Vilasi, G. Marmo, and M. Salerno, “A new characterization of completely integrable systems,” Nuovo Cimento B, 83, 97–112 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  32. P. D. Lax, “Integrals of nonlinear equations of evolution and solitary ways,” Commun. Pure Appl. Math., 21, 467–490 (1968).

    Article  MATH  Google Scholar 

  33. M. Santoprete, “On the relationship between two notions of compatibility for bi-Hamiltonian systems,” SIGMA, 11, 089 (2015).

    MathSciNet  MATH  Google Scholar 

  34. G. Marmo and G. Vilasi, “When do recursion operators generate new conservation laws?” Phys. Lett. B, 277, 137–140 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  35. Y. A. Grigoryev and A. V. Tsiganov, “On bi-Hamiltonian formulation of the perturbed Kepler problem,” J. Phys. A: Math. Theor., 48, 175206 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. R. G. Smirnov, “Magri–Morosi–Gel’fand–Dorfman’s bi-Hamiltonian constructions in the action–angle variables,” J. Math. Phys., 38, 6444–6454 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. W. Oevel, “A geometrical approach to integrable systems admitting time dependent invariants,” in: Topics in Soliton Theory and Exactly Solvable Nonlinear Equations (Proceedings of the Conference on Nonlinear Evolution Equations, Solitons and the Inverse Scattering Transform, Oberwolfach, Germany, July 27 – August 2 1986, M. Ablowitz, B. Fuchssteiner, and M. Kruskal, eds.), World Sci., Singapore (1987), pp. 108–124.

    MathSciNet  MATH  Google Scholar 

  38. R. L. Fernandes, “On the master symmetries and bi-Hamiltonian structure of the Toda lattice,” J. Phys. A: Math. Gen., 26, 3797–3803 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. R. G. Smirnov, “The action–angle coordinates revisited: bi-Hamiltonian systems,” Rep. Math. Phys., 44, 199–204 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. O. I. Bogoyavlenskij, “Theory of tensor invariants of integrable Hamiltonian systems. I. Incompatible Poisson structures,” Commun. Math. Phys., 180, 529–586 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. M. F. Rañada, “A system of \(n=3\) coupled oscillators with magnetic terms: symmetries and integrals of motion,” SIGMA, 1, 004 (2005).

    MathSciNet  MATH  Google Scholar 

  42. R. L. Fernandes, “Completely integrable bi-Hamiltonian systems,” J. Dyn. Differ. Equ., 6, 53–69 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA (1994).

    MATH  Google Scholar 

  44. B. Vakili, P. Pedram, and S. Jalalzadeh, “Late time acceleration in a deformed phase space model of dilaton cosmology,” Phys. Lett. B, 687, 119–123 (2010).

    Article  ADS  Google Scholar 

  45. B. Malekolkalami, K. Atazadeh, and B. Vakili, “Late time acceleration in a non-commutative model of modified cosmology,” Phys. Lett. B, 739, 400–404 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. N. Khosravi, S. Jalalzadeh, and H. R. Sepangi, “Non-commutative multi-dimensional cosmology,” JHEP, 01, 134 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  47. G. Rudolph and M. Schmidt, Differential Geometry and Mathematical Physics. Part I. Manifolds, Lie Group and Hamiltonian Systems, Springer, Dordrecht (2013).

    Book  MATH  Google Scholar 

  48. B. Dubrovin, Bihamiltonian Structures of PDEs and Frobenius Manifolds, in: Lectures at the ICTP Summer School “Poisson Geometry” (Trieste, Italia, July 11–15 2005), SISSA, Trieste (2005).

    Google Scholar 

  49. M. N. Hounkonnou, M. J. Landalidji, and E. Baloïtcha, “Recursion operator in a noncommutative Minkowski phase space,” in: Geometric Methods in Physics XXXVI (P. Kielanowski, A. Odzijewicz, E. Previato, eds.) (Białowieża, Poland, July 2–8, 2017), Trends in Mathematics, Birkhäuser, Cham (2019), pp. 83–93.

    Article  MathSciNet  MATH  Google Scholar 

  50. M. N. Hounkonnou and M. J. Landalidji, “Hamiltonian dynamics for the Kepler problem in a deformed phase space,” in: Geometric Methods in Physics XXXVII (P. Kielanowski, A. Odzijewicz, E. Previato, eds.) (Białowieża, Poland, July 1 – 7, 2018) Trends in Mathematics, Birkhäuser, Cham (2019), pp. 34–48.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Dieudonné, Eléments d’Analyse, Tome 3, Gauthiers-Villars, Paris (1970).

    MATH  Google Scholar 

  52. R. Abraham and J. E. Marsden, Foundation of Mechanics, Addison-Wesley, New York (1978).

    Google Scholar 

  53. V. I. Arnold, Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, Vol. 60), Springer, New York (1978).

    Book  Google Scholar 

  54. J. Liouville, “Note sur l’intégration des équations différentielles de la Dynamique,” J. Math. Pure Appl., 20, 137–138 (1855).

    Google Scholar 

  55. C. Canute and A. Tabacco, Mathematical Analysis I, Springer, Milan (2008).

    Book  Google Scholar 

  56. M. Born, The Mechanics of the Atom, G. Bell and Sons Limited, London (1927).

    MATH  Google Scholar 

  57. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (3), Springer, Berlin (2006).

    Book  MATH  Google Scholar 

  58. A. Morbidelli, Modern Celestial Mechanics: Aspects of Solar System Dynamics, Taylor & Francis, New York (2002).

    MATH  Google Scholar 

  59. R. Caseiro, “Master integrals, superintegrability and quadratic algebras,” Bull. Sci. Math., 126, 617–630 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  60. P. A. Damianou, “Symmetries of Toda equations,” J. Phys. A: Math. Gen., 26, 3791–3796 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. M. F. Rañada, “Superintegrability of the Calogero–Moser system: constants of motion, master symmetries, and time-dependent symmetries,” J. Math. Phys., 40, 236–247 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

The ICMPA-UNESCO Chair is in partnership with the Association pour la Promotion Scientifique de l’Afrique (APSA), France, and Daniel Iagolnitzer Foundation (DIF), France, supporting the development of mathematical physics in Africa. M. M. is supported by the Faculty of Mechanical Engineering, University of Niš, Serbia, Grant “Research and development of new generation machine systems in the function of the technological development of Serbia.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Hounkonnou.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 207, pp. 403-423 https://doi.org/10.4213/tmf10017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hounkonnou, M.N., Landalidji, M.J. & Mitrović, M. Noncommutative Kepler Dynamics: symmetry groups and bi-Hamiltonian structures. Theor Math Phys 207, 751–769 (2021). https://doi.org/10.1134/S0040577921060064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921060064

Keywords

Navigation