Skip to main content
Log in

Pure soliton solutions of the nonlocal Kundu–nonlinear Schrödinger equation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We systematically present an inverse scattering transform for a nonlocal reverse-space higher-order nonlinear Schrödinger equation with nonzero boundary conditions at infinity. We discuss two cases determined by two different values of the phase at infinity. In particular, for the direct problem, we study the analytic properties of the scattering data and the eigenfunctions and also find their symmetries. We study the inverse scattering problem obtained from the new nonlocal system using left and right Riemann–Hilbert problems with a suitable uniformization variable; we construct the time dependence of the scattering data. Finally, for these two phase values, we analyze the dynamics of solitons (solutions of the considered Schrödinger equation) in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg–deVries equation,” Phys. Rev. Lett., 19, 1095–1097 (1967).

    Article  ADS  MATH  Google Scholar 

  2. P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Commun. Pure Appl. Math., 21, 467–490 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of wave in nonlinear media,” JETP, 34, 62–69 (1971).

    ADS  MathSciNet  Google Scholar 

  4. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Nonlinear-evolution equations of physical significance,” Phys. Rev. Lett., 31, 125–127 (1973).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “The inverse scattering transform–Fourier analysis for nonlinear problems,” Stud. Appl. Math., 53, 249–315 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Wadati, “The modified Korteweg–de Vries equation,” J. Phys. Soc. Japan, 34, 1289–1296 (1973).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Wadati and K. Ohkuma, “Multiple-pole solutions of the modified Korteweg–de Vries equation,” J. Phys. Soc. Japan, 51, 2029–2035 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  8. G. Zhang and Z. Yan, “Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions,” Phys. D, 410, 132521 (2020).

    Article  MathSciNet  Google Scholar 

  9. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Method for solving the sine-Gordon equation,” Phys. Rev. Lett., 30, 1262–1264 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. J. Ablowitz, D. B. Yaacov, and A. Fokas, “On the inverse scattering transform for the Kadomtsev–Petviashvili equation,” Stud. Appl. Math., 69, 135–143 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Constantin, V. S. Gerdjikov, and R. I. Ivanov, “Inverse scattering transform for the Camassa–Holm equation,” Inverese Problems, 22, 2197–2208 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. S. Fokas and M. J. Ablowitz, “The inverse scattering transform for the Benjamin–Ono equation pivot to multidimensional problems,” Stud. Appl. Math., 68, 1–10 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Constantin, R. I. Ivanov, and J. Lenells, “Inverse scattering transform for the Degasperis–Procesi equation,” Nonlinearity, 23, 2559–2575 (2010); arXiv:1205.4754v1 [nlin.SI] (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. G. Biondini and G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions,” J. Math. Phys., 55, 031506 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. F. Demontis, B. Prinari, C. van der Mee, and F. Vitale, “The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions,” J. Math. Phys., 55, 101505 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. G. Biondini and D. Kraus, “Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions,” SIAM J. Math. Anal., 47, 706–757 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Biondini, G. Kovačič, and D. K. Kraus, “The focusing Manakov system with nonzero boundary conditions,” Nonlinearity, 28, 3101–3151 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. B. Prinari, M. J. Ablowitz, and G. Biondini, “Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions,” J. Math. Phys., 47, 063508 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. G. Biondini, D. K. Kraus, and B. Prinari, “The three component focusing non-linear Schrödinger equation with nonzero boundary conditions,” Commun. Math. Phys., 348, 475–533 (2016); arXiv:1511.02885v1 [nlin.SI] (2015).

    Article  ADS  MATH  Google Scholar 

  20. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having \(\mathcal{P\!T}\) symmetry,” Phys. Rev. Lett., 80, 5243–5246 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. C. M. Bender, S. Boettcher, and P. N. Meisinger, “\(\mathcal{P\!T}\)-symmetric quantum mechanics,” J. Math. Phys., 40, 2201–2229 (1999); arXiv:quant-ph/9809072v1 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. Mostafazadeh, “Exact \(PT\)-symmetry is equivalent to Hermiticity,” J. Phys. A: Math Gen., 36, 7081–7092 (2003); arXiv:quant-ph/0304080v2 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister, “Faster than Hermitian quantum mechanics,” Phys. Rev. Lett., 98, 040403 (2007); arXiv:quant-ph/0609032v1 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. J. Yang, “Partially \(\mathcal{P\!T}\) symmetric optical potentials with all-real spectra and soliton families in multidimensions,” Opt. Lett., 39, 1133–1136 (2014); arXiv:1312.3660v1 [nlin.PS] (2013).

    Article  ADS  Google Scholar 

  25. A. Ruschhaupt, F. Delgado, and J. Muga, “Physical realization of \(\mathcal{P\!T}\)-symmetric potential scattering in a planar slab waveguide,” J. Phys. A: Math. Gen., 38, L171–L176 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical \(PT\)-symmetric structures,” Opt. Lett., 32, 2632–2634 (2007).

    Article  ADS  Google Scholar 

  27. H. Cartarius and G. Wunner, “Model of a \(\mathcal{P\!T}\)-symmetric Bose–Einstein condensate in a \(\delta\)-function double-well potential,” Phys. Rev. A, 86, 013612 (2012); arXiv:1203.1885v2 [quant-ph] (2012).

    Article  ADS  Google Scholar 

  28. J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active \(LRC\) circuits with \(\mathcal{P\!T}\) symmetries,” Phys. Rev. A, 84, 040101 (2011).

    Article  ADS  Google Scholar 

  29. C. M. Bender, B. K. Berntson, D. Parker, and E. Samuel, “Observation of \(\mathcal{P\!T}\) phase transition in a simple mechanical system,” Amer. J. Phys., 81, 173–179 (2013); arXiv:1206.4972v1 [math-ph] (2012).

    Article  ADS  Google Scholar 

  30. T. A. Gadzhimuradov and A. M. Agalarov, “Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation,” Phys. Rev. A, 93, 062124 (2011).

    Article  ADS  Google Scholar 

  31. A. Kundu, “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations,” J. Math. Phys., 25, 3433–3438 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Kundu, “Integrable hierarchy of higher nonlinear Schrödinger type equations,” SIGMA, 2, 078 (2006).

    MathSciNet  MATH  Google Scholar 

  33. C. Zhang, C. Li, and J. He, “Darboux transformation and rogue waves of the Kundu–nonlinear Schrödinger equation,” Math. Methods Appl. Sci., 38, 2411–2425 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. X.-B. Wang and B. Han, “The Kundu–nonlinear Schrödinger equation: Breathers, rogue waves, and their dynamics,” J. Phys. Soc. Japan, 89, 014001 (2020).

    Article  ADS  Google Scholar 

  35. X.-B. Wang and B. Han, “Inverse scattering transform of an extended nonlinear Schrödinger equation with nonzero boundary conditions and its multisoliton solutions,” J. Math. Anal. Appl., 487, 123968 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  36. F. Calogero and W. Eckhaus, “Nonlinear evolution equations, rescalings, model PDEs, and their integrability: I,” Inverse Problems, 3, 229–262 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. D.-S. Wang, B. Guo, and X. Wang, “Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions,” J. Differ. Equ., 266, 5209–5253 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. X. Shi, J. Li, and C. Wu, “Dynamics of soliton solutions of the nonlocal Kundu–nonlinear Schrödinger equation,” Chaos, 29, 023120 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. M. J. Ablowitz, X. D. Luo, and Z. H. Musslimani, “The inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions,” J. Math. Phys., 59, 011501 (2018); arXiv:1612.02726v1 [nlin.SI] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. M. J. Ablowitz and Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation,” Nonlinearity, 29, 915–946 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. M. J. Ablowitz, Bao-Feng Feng, X. Luo, and Z. Musslimani, “Inverse scattering transform for the nonlocal reverse space–time nonlinear Schrödinger equation,” Theor. Math. Phys., 196, 1241–1267 (2018).

    Article  MATH  Google Scholar 

  42. M. J. Ablowitz, B.-F. Feng, X.-D. Luo, and Z. H. Musslimani, “Reverse space–time nonlocal sine-Gordon/sinh-Gordon equations with nonzero boundary conditions,” Stud. Appl. Math., 141, 267–307 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  43. M. J. Ablowitz and Z. H. Musslimani, “Integrable nonlocal nonlinear equations,” Stud. Appl. Math., 139, 7–59 (2016); arXiv:1610.02594v1 [nlin.SI] (2016).

    Article  MathSciNet  MATH  Google Scholar 

  44. M. J. Ablowitz and Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation,” Phys. Rev. Lett., 110, 064105 (2013).

    Article  ADS  Google Scholar 

  45. W.-X. Ma, Y. Huang, and F. Wang, “Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies,” Stud. Appl. Math., 145, 563–585 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  46. W.-X. Ma, “Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations,” Proc. Amer. Math. Soc., 149, 251–263 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Yang, “General \(N\)-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations,” Phys. Lett. A, 383, 328–337 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  48. S.-F. Tian and H.-Q. Zhang, “Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV–Burgers equation,” Theor. Math. Phys., 170, 287–314 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Yang, “Physically significant nonlocal nonlinear Schrödinger equations and its soliton solutions,” Phys. Rev. E, 98, 042202 (2018); arXiv:1807.02185v1 [nlin.SI] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  50. Z.-Q. Li, S.-F. Tian, W.-Q. Peng, and J.-J. Yang, “Inverse scattering transform and soliton classification of higher-order nonlinear Schrödinger–Maxwell–Bloch equations,” Theor. Math. Phys., 203, 709–725 (2020).

    Article  MATH  Google Scholar 

  51. W.-Q. Peng, S.-F. Tian, X.-B. Wang, T.-T. Zhang, and Y. Fang, “Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations,” J. Geom. Phys., 146, 103508 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  52. X.-B. Wang, S.-F. Tian, and T.-T. Zhang, “Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation,” Proc. Amer. Math. Soc., 146, 3353–3365 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  53. X.-B. Wang and B. Han, “The pair-transition-coupled nonlinear Schrödinger equation: The Riemann–Hilbert problem and \(N\)-soliton solutions,” Eur. Phys. J. Plus, 134, 78 (2019).

    Article  Google Scholar 

  54. W.-X. Ma, “Riemann–Hilbert problems of a six-component mKdV system and its soliton solutions,” Acta Math. Sci., 39, 509–523 (2019).

    Article  MathSciNet  Google Scholar 

  55. G. Zhang and Z. Yan, “Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions,” Phys. D, 402, 132170 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  56. G. Zhang and Z. Yan, “Multi-rational and semi-rational solitons and interactions for the nonlocal coupled nonlinear Schrödinger equations,” Europhys. Lett., 118, 60004 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (Grant No. 11871180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bin Wang.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XB., Han, B. Pure soliton solutions of the nonlocal Kundu–nonlinear Schrödinger equation. Theor Math Phys 206, 40–67 (2021). https://doi.org/10.1134/S0040577921010037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921010037

Keywords

Navigation