Skip to main content
Log in

Quantum Entanglement in the Nonrelativistic Collision Between Two Identical Fermions with Spin 1/2

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the framework of nonstationary scattering theory, we study the formation of an entangled state of two identical nonrelativistic spin-1/2 particles as a result of their elastic scattering. The measure of particle entanglement in the final channel is described using pair concurrence. For the indicated quantitative criterion, we obtain general expressions in terms of the direct and exchange scattering amplitudes in the cases of pure and mixed spin states of the pair in the initial channel. We consider the violation of Bell’s inequality in the final channel. We show that as a result of a collision between unpolarized particles, a Werner spin state of the pair forms, which is entangled if the singlet component of the angular differential scattering cross section in the center-of-mass reference frame exceeds the triplet component. We use the process of free electron-electron scattering as an example to illustrate the developed formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bohm and Y. Aharonov, “Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky,” Phys. Rev., 108, 1070–1076 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Bell, “On the Einstein Podolsky Rosen paradox,” Phys. Phys. Fiz., 1, 195–200 (1964).

    MathSciNet  Google Scholar 

  3. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett., 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  4. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Modern Phys., 77, 513–577 (2005); arXiv:quant-ph/0410100v1 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Modern Phys., 81, 865–942 (2009); arXiv:quant-ph/0702225v2 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Stolze and D. Suter, Quantum Computing: A Short Course from Theory to Experiment, Wiley-VCH, Weinheim (2007).

    MATH  Google Scholar 

  7. J. R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, Dover, Mineola, N. Y. (2006).

    Google Scholar 

  8. L. Lamata and J. León, “Generation of bipartite spin entanglement via spin-independent scattering,” Phys. Rev. A, 73, 052322 (2006); arXiv:quant-ph/0602090v2 (2006).

    Article  ADS  Google Scholar 

  9. R. Feder, F. Giebels, and H. Gollisch, “Entanglement creation in electron-electron collisions at solid surfaces,” Phys. Rev. B, 92, 075420 (2015).

    Article  ADS  Google Scholar 

  10. D. Vasilyev, F. O. Schumann, F. Giebels, H. Gollisch, J. Kirschner, and R. Feder, “Spin-entanglement between two freely propagating electrons: Experiment and theory,” Phys. Rev. B, 95, 115134 (2017).

    Article  ADS  Google Scholar 

  11. J. Kessler, Polarized Electrons, Springer, Berlin (1985).

    Book  Google Scholar 

  12. J. Schliemann, J. I. Cirac, M. Kus, M. Lewenstein, and D. Loss, “Quantum correlations in two-fermion systems,” Phys. Rev. A, 64, 022303 (2001); arXiv:quant-ph/0012094v2 (2000).

    Article  ADS  Google Scholar 

  13. G. C. Ghirardi and L. Marinatto, “General criterion for the entanglement of two indistinguishable particles,” Phys. Rev. A, 70, 012109 (2004); arXiv:quant-ph/0401065v2 (2004).

    Article  ADS  Google Scholar 

  14. M. C. Tichy, F. Mintert, and A. Buchleitner, “Essential entanglement for atomic and molecular physics,” J. Phys. B, 44, 192001 (2011); arXiv:1012.3940v2 [quant-ph] (2010).

    Article  ADS  Google Scholar 

  15. M. C. Tichy, F. de Melo, M. Kuś, F. Mintert, and A. Buchleitner, “Entanglement of identical particles and the detection process,” Fortschr. Phys., 61, 225–237 (2013).

    Article  MathSciNet  Google Scholar 

  16. R. L. Franco and G. Compagno, “Quantum entanglement of identical particles by standard information-theoretic notions,” Sci. Rep., 6, 20603 (2016); arXiv:1511.03445v4 [quant-ph] (2015).

    Article  Google Scholar 

  17. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett., 80, 2245–2248 (1998); arXiv:quant-ph/9709029v2 (1997).

    Article  ADS  Google Scholar 

  18. L. J. B. Goldfarb, “Angular correlations and polarization,” in: Nuclear Reactions (P. M. Endt and M. Demeur, eds.), Vol. 1, North-Holland, Amsterdam (1959), pp. 159–214.

    Google Scholar 

  19. C. J. Joachain, Quantum Collision Theory, North-Holland, Amsterdam (1975).

    Google Scholar 

  20. F. Mintert, A. R. R. Carvalho, M. Kuś, and A. Buchleitner, “Measures and dynamics of entangled states,” Phys. Rep., 415, 207–259 (2005); arXiv:quant-ph/0505162v1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Rungta, V. Buẑek, C. M. Caves, M. Hillery, and G. J. Milburn, “Universal state inversion and concurrence in arbitrary dimensions,” Phys. Rev. A, 64, 042315 (2001); arXiv:quant-ph/0102040v2 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  22. R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model,” Phys. Rev. A, 40, 4277–4281 (1989).

    Article  ADS  Google Scholar 

  23. S. Popescu, “Bell’s inequalities versus teleportation: What is nonlocality?” Phys.Rev. Lett., 72, 797–799 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Hiroshima and S. Ishizaka, “Local and nonlocal properties of Werner states,” Phys. Rev. A, 62, 044302 (2000); arXiv:quant-ph/0003058v1 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  25. B. S. Cirel’son, “Quantum generalizations of Bell’s inequality,” Lett. Math. Phys., 4, 93–100 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  26. R. H. Dalitz, “On higher Born approximations in potential scattering,” Proc. Roy. Soc. Lond. Ser. A, 206, 509–520 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  27. W. F. Ford, “Anomalous behavior of the Coulomb T matrix,” Phys. Rev., 133, B1616–B1621 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Weinberg, “Infrared photons and gravitons,” Phys. Rev., 140, B516–B524 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  29. K. A. Kouzakov, Yu. V. Popov, and V. L. Shablov, “Comment on ‘Exact three-dimensional wave function and the on-shell t matrix for the sharply cut-off Coulomb potential: Failure of the standard renormalization factor’,” Phys. Rev. C, 81, 019801 (2010); arXiv:0908.3137v1 [nucl-th] (2009).

    Article  ADS  Google Scholar 

  30. J. D. Dollard, “Asymptotic convergence and the Coulomb interaction,” J. Math. Phys., 5, 729–738 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  31. S. P. Merkuriev and L. D. Faddeev, Quantum Theory of Scattering for Systems of Several Particles [in Russian], Nauka, Moscow (1985)

    Google Scholar 

  32. English transl: L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory for Several Particle Systems (Math. Phys. Appl. Math., Vol. 11), Kluwer, Dordrecht (1993).

    Book  Google Scholar 

Download references

Acknowledgments

The author is grateful to L. Chotorlishvili for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Kouzakov.

Ethics declarations

Conflicts of interest. The author declares no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouzakov, K.A. Quantum Entanglement in the Nonrelativistic Collision Between Two Identical Fermions with Spin 1/2. Theor Math Phys 201, 1664–1679 (2019). https://doi.org/10.1134/S0040577919110102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919110102

Keywords

Navigation