Skip to main content
Log in

Cut-and-Join Operators and Macdonald Polynomials From the 3-Schur Functions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Schur polynomials admit a somewhat mysterious deformation to Macdonald and Kerov polynomials, which do not have a direct group theory interpretation but do preserve most of the important properties of Schur functions. Nevertheless, the family of Schur–Macdonald functions is not sufficiently large: for various applications today, we need their not-yet-known analogues labeled by plane partitions, i.e., three-dimensional Young diagrams. Recently, a concrete way to obtain this generalization was proposed, and miraculous coincidences were described, raising hopes that it can lead in the right direction. But even in that case, much work is needed to convert the idea of generalized 3-Schur functions into a justified and effectively working theory. In particular, we can expect that Macdonald functions (and even all Kerov functions, given some luck) enter this theory on an equal footing with ordinary Schur functions. In detail, we describe how this works for Macdonald polynomials when the vector-valued times, which are associated with plane partitions and are arguments of the 3-Schur functions, are projected onto the ordinary scalar times under nonzero angles that depend on the Macdonald parameters q and t. We show that the cut-and-join operators smoothly interpolate between different limit cases. Most of the examples are restricted to level 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yu. Morozov, “String theory: What is it?” Sov. Phys. Usp., 35, 671–714 (1992); Erratum, 35, 1003 (1992); “Integrability and matrix models,” Phys. Usp., 37, 1–55 (1994); arXiv:hep-th/9303139v2 (1993); “Matrix models as integrable systems,” arXiv:hep-th/9502091v1 (1995); “Challenges of matrix models,” arXiv:hepth/0502010v2 (2005)

    Article  ADS  Google Scholar 

  2. A. Mironov, “2D gravity and matrix models I: 2D gravity,” Internat. J. Modern Phys. A, 9, 4355–4405 (1994); arXiv:hep-th/9312212v1 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. D. Mironov, “Matrix models of two-dimensional gravity,” Phys. Part. Nucl., 33, 537–582 (2002); arXiv:hep-th/9409190v2 (1994).

    Google Scholar 

  4. A. Gorsky, I. M. Krichever, A. Marshakov, A. Mironov, and A. Morozov, “Integrability and Seiberg–Witten exact solution,” Phys. Lett. B, 355, 466–474 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory,” Nucl. Phys. B, 241, 333–380 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Zamolodchikov and Al. Zamolodchikov, Conformal Field Theory and Critical Phenomena in Two-Dimensional Systems [in Russian], MTsNMO, Moscow (2009)

    MATH  Google Scholar 

  7. L. Alvarez-Gaumé, “Random surfaces, statistical mechanics, and string theory,” Helv. Phys. Acta, 64, 359–526 (1991)

    MathSciNet  Google Scholar 

  8. P. D. Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory, Springer, New York (1997)

    Book  MATH  Google Scholar 

  9. A. V. Marshakov, A. D. Mironov, and A. Yu. Morozov, “Combinatorial expansions of conformal blocks,” Theor. Math. Phys., 164, 831–852 (2010); arXiv:0907.3946v2 [hep-th] (2009)

    Article  MATH  Google Scholar 

  10. A. D. Mironov, S. A. Mironov, A. Yu. Morozov, and A. A. Morozov, “Calculations in conformal theory needed for verifying the Alday–Gaiotto–Tachikawa hypothesis,” Theor. Math. Phys., 165, 1662–1698 (2010); arXiv:0908.2064v2 [hep-th] (2009).

    Article  MATH  Google Scholar 

  11. N. A. Nekrasov, “Seiberg–Witten prepotential from instanton counting,” Adv. Theor. Math. Phys., 7, 831–864 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Flume and R. Poghossian, “An algorithm for the microscopic evaluation of the coefficients of the Seiberg–Witten prepotential,” Internat. J. Modern Phys. A, 18, 2541–2563 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. N. Nekrasov and A. Okounkov, “Seiberg–Witten theory and random partitions,” arXiv:hep-th/0306238v2 (2003)

    MATH  Google Scholar 

  14. N. Nekrasov and S. Shadchin, “ABCD of instantons,” Commun. Math. Phys., 252, 359–391 (2004); arXiv:hep-th/0404225v2 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Mironov and A. Morozov, “The power of Nekrasov functions,” Phys. Lett. B, 680, 188–194 (2009); arXiv:0908.2190v1 [hep-th] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  16. L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville correlation functions from four-dimensional gauge theories,” Lett. Math. Phys., 91, 167–197 (2010); arXiv:0906.3219v2 [hep-th] (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. N. Wyllard, “A N− 1 conformal Toda field theory correlation functions from conformal N=2 SU(N) quiver gauge theories,” JHEP, 0911, 002 (2009); arXiv:0907.2189v2 [hep-th] (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Mironov and A. Morozov, “On AGT relation in the case of U(3),” Nucl. Phys. B, 825, 1–37 (2010); arXiv:0908.2569v2 [hep-th] (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Vl. S. Dotsenko and V. A. Fateev, “Conformal algebra and multipoint correlation functions in 2D statistical models,” Nucl. Phys. B, 240, 312–348 (1984)

    Article  ADS  Google Scholar 

  20. A. Marshakov, A. Mironov, and A. Morozov, “Generalized matrix models as conformal field theories: Discrete case,” Phys. Lett. B, 265, 99–107 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and S. Pakuliak, “Conformal matrix models as an alternative to conventional multi-matrix models,” Nucl. Phys. B, 404, 717–750 (1993); arXiv:hep-th/9208044v1 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. R. Dijkgraaf and C. Vafa, “Toda theories, matrix models, topological strings, and N=2 gauge systems,” arXiv:0909.2453v1 [hepth] (2009)

    MATH  Google Scholar 

  23. H. Itoyama, K. Maruyoshi, and T. Oota, “The quiver matrix model and 2d–4d conformal connection,” Prog. Theor. Phys., 123, 957–987 (2010); arXiv:0911.4244v2 [hep-th] (2009)

    Article  ADS  MATH  Google Scholar 

  24. A. Mironov, A. Morozov, and Sh. Shakirov, “Matrix model conjecture for exact BS periods and Nekrasov functions,” JHEP, 1002, 030 (2010); arXiv:0911.5721v2 [hep-th] (2009); “Conformal blocks as Dotsenko–Fateev integral discriminants,” Internat. J. Modern Phys. A, 25, 3173–3207 (2010); arXiv:1001.0563v2 [hep-th] (2010); “Towards a proof of AGT conjecture by methods of matrix models,” Internat. J. Modern Phys. A, 27, 1230001 (2012); arXiv:1011.5629v1 [hep-th] (2010); “On the ‘Dotsenko–Fateev’ representation of the toric conformal blocks,” J. Phys. A: Math. Theor., 44, 085401 (2011); arXiv:1010.1734v1 [hep-th] (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. H. Itoyama and T. Oota, “Method of generating q-expansion coefficients for conformal block and N =2 Nekrasov function by β-deformed matrix model,” Nucl. Phys. B, 838, 298–330 (2010); arXiv:1003.2929v2 [hep-th] (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Mironov, A. Morozov, Sh. Shakirov, and A. Smirnov, “Proving AGT conjecture as HS duality: Extension to five dimensions,” Nucl. Phys. B, 855, 128–151 (2012); arXiv:1105.0948v1 [hep-th] (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. Morozov and Y. Zenkevich, “Decomposing Nekrasov decomposition,” JHEP, 1602, 098 (2016); arXiv:1510.01896v1 [hep-th] (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. A. Mironov and A. Morozov, “On determinant representation and integrability of Nekrasov functions,” Phys.Lett. B, 773, 34–46 (2017); arXiv:1707.02443v2 [hep-th] (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, New York (2015).

    MATH  Google Scholar 

  30. J. Ding and K. Iohara, “Generalization and deformation of Drinfeld quantum affine algebras,” Lett. Math. Phys., 41, 181–193 (1997); arXiv:q-alg/9608002v2 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Miki, “A (q, y) analog of the W 1+ algebra,” J. Math. Phys., 48, 123520 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. B. Feigin, E. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, “Quantum continuous gl: Semi-infinite construction of representations,” Kyoto J. Math., 51, 337–364 (2011); arXiv:1002.3100v1 [math.QA] (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi, and S. Yanagida, “A commutative algebra on degenerate CP1 and Macdonald polynomials,” J. Math. Phys., 50, 095215 (2009); arXiv:0904.2291v1 [math.CO] (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. B. Feigin, E. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, “Quantum continuous gl: Tensor products of Fock modules and W n characters,” Kyoto J. Math., 51, 365–392 (2011); arXiv:1002.3113v1 [math.QA] (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Awata, B. Feigin, A. Hoshino, M. Kanai, J. Shiraishi, and S. Yanagida, “Notes on Ding–Iohara algebra and AGT conjecture,” arXiv:1106.4088v3 [math-ph] (2011)

    Google Scholar 

  36. B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, “Quantum toroidal gl1 algebra: Plane partitions,” Kyoto J. Math., 52, 621–659 (2012); arXiv:1110.5310v1 [math.QA] (2011); “Representations of quantum toroidal glN,” J. Algebra, 380, 78–108 (2013); arXiv:1204.5378v1 [math.QA] (2012); “Branching rules for quantum toroidal gl(N),” Adv. Math., 300, 229–274 (2016); arXiv:1309.2147v3 [math.QA] (2013); “Quantum toroidal gl1 and Bethe ansatz,” J. Phys. A, 48, 244001 (2015); arXiv:1502.07194v1 [math.QA] (2015); “Finite type modules and Bethe ansatz for quantum toroidal,” Commun. Math. Phys., 356, 285–327 (2017); arXiv:1603.02765v1 [math.QA] (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Awata, B. Feigin, and J. Shiraishi, “Quantum algebraic approach to refined topological vertex,” JHEP, 1203, 041 (2012); arXiv:1112.6074v1 [hep-th] (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. H. Awata, H. Kanno, T. Matsumoto, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, and Y. Zenkevich, “Explicit examples of DIM constraints for network matrix models,” JHEP, 1607, 103 (2016); arXiv:1604.08366v3 [hep-th] (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. H. Awata, H. Kanno, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, and Y. Zenkevich, “Generalized Knizhnik–Zamolodchikov equation for Ding–Iohara–Miki algebra,” Phys. Rev. D, 96, 026021 (2017); arXiv:1703.06084v2 [hep-th] (2017)

    Article  ADS  MathSciNet  Google Scholar 

  40. H. Awata, H. Kanno, A. Mironov, A. Morozov, K. Suetake, and Y. Zenkevich, “(q, t)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces,” JHEP, 1803, 192 (2018); arXiv:1712.08016v2 [hep-th] (2017).

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Iqbal, C. Vafa, N. Nekrasov, and A. Okounkov, “Quantum foam and topological strings,” JHEP, 0804, 011 (2008); arXiv:hep-th/0312022v2 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. J.-E. Bourgine, Y. Matsuo, and H. Zhang, “Holomorphic field realization of SHc and quantum geometry of quiver gauge theories,” JHEP, 1604, 167 (2016); arXiv:1512.02492v3 [hep-th] (2015)

    ADS  Google Scholar 

  43. T. Kimura and V. Pestun, “Quiver W-algebras,” Lett. Math. Phys., 108, 1351–1381 (2018); arXiv:1512.08533v4 [hep-th] (2015); “Quiver elliptic W-algebras,” Lett. Math. Phys., 108, 1383–1405 (2018); arXiv:1608.04651v3 [hep-th] (2016); “Fractional quiver W-algebras,” Lett. Math. Phys., 108, 2425–2451 (2018); arXiv:1705.04410v4 [hep-th] (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. A. Mironov, A. Morozov, and Y. Zenkevich, “Spectral duality in elliptic systems, six-dimensional gauge theories, and topological strings,” JHEP, 1605, 121 (2016); arXiv:1603.00304v1 [hep-th] (2016); “Ding–Iohara–Miki symmetry of network matrix models,” Phys. Lett. B, 762, 196–208 (2016); arXiv:1603.05467v4 [hep-th] (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. H. Awata, H. Kanno, T. Matsumoto, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, and Y. Zenkevich, “Toric Calabi–Yau threefolds as quantum integrable systems: R-matrix and RTT relations,” JHEP, 1610, 047 (2016); arXiv:1608.05351v2 [hep-th] (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. H. Awata, H. Kanno, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, and Y. Zenkevich, “Anomaly in RTT relation for DIM algebra and network matrix models,” Nucl. Phys. B, 918, 358–385 (2017); arXiv:1611.07304v3 [hep-th] (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. J.-E. Bourgine, M. Fukuda, Y. Matsuo, and R.-D. Zhu, “Reflection states in Ding–Iohara–Miki algebra and brane-web for D-type quiver,” JHEP, 1712, 015 (2017); arXiv:1709.01954v2 [hep-th] (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. F. Nieri, Y. Pan, and M. Zabzine, “3d expansions of 5d instanton partition functions,” JHEP, 1804, 092 (2018); arXiv:1711.06150v3 [hep-th] (2017); “Bootstrapping the iS5 partition function,” EPJ Web Conf., 191, 06005 (2018); arXiv:1807.11900v1 [hep-th] (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. O. Foda and M. Manabe, “Macdonald topological vertices and brane condensates,” Nucl. Phys. B, 936, 448–471 (2018); arXiv:1801.04943v2 [hep-th] (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. A. Morozov, “An analogue of Schur functions for the plane partitions,” Phys. Lett. B, 785, 175–183 (2018); arXiv:1808.01059v4 [hep-th] (2018).

    Article  ADS  MATH  Google Scholar 

  51. A. Morozov and A. Smirnov, “Towards the proof of AGT relations with the help of the generalized Jack polynomials,” Lett. Math. Phys., 104, 585–612 (2014); arXiv:1307.2576v2 [hep-th] (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. S. Mironov, A. Morozov, and Y. Zenkevich, “Generalized Jack polynomials and the AGT relations for the SU(3) group,” JETP Lett., 99, 109–113 (2014); arXiv:1312.5732v2 [hep-th] (2013)

    Article  ADS  Google Scholar 

  53. Y. Ohkubo, “Existence and orthogonality of generalized Jack polynomials and its q-deformation,” arXiv:1404.5401v1 [math-ph] (2014)

    Google Scholar 

  54. Ya. Kononov and A. Morozov, “On factorization of generalized Macdonald polynomials,” Eur. Phys. J. C, 76, 424 (2016); arXiv:1607.00615v3 [hep-th] (2016)

    Article  ADS  Google Scholar 

  55. Y. Zenkevich, “Refined toric branes, surface operators, and factorization of generalized Macdonald polynomials,” JHEP, 1709, 70 (2017); arXiv:1612.09570v2 [hep-th] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Y. Zenkevich, “3d field theory, plane partitions, and triple Macdonald polynomials,” arXiv:1712.10300v2 [hep-th] (2017).

    MATH  Google Scholar 

  57. N. Nekrasov, “Magnificent four,” arXiv:1712.08128v2 [hep-th] (2017)

    Google Scholar 

  58. N. Nekrasov and N. Piazzalunga, “Magnificent four with colors,” Commun. Math. Phys. (to appear); arXiv:1808.05206v3 [hep-th] (2018).

    Google Scholar 

  59. A. D. Mironov, A. Yu. Morozov, and S. M. Natanzon, “Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory,” Theor. Math. Phys., 166, 1–22 (2011); arXiv:0904.4227v2 [hep-th] (2009); “Algebra of differential operators associated with Young diagrams,” J. Geom. Phys., 62, 148–155 (2012); arXiv:1012.0433v1 [math.GT] (2010).

    Article  MathSciNet  MATH  Google Scholar 

  60. S. V. Kerov, “Hall–Littlewood functions and orthogonal polynomials,” Funct. Anal. Appl., 25, 65–66 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  61. A. Mironov and A. Morozov, “Kerov functions revisited,” arXiv:1811.01184v1 [hep-th] (2018).

    Google Scholar 

  62. J. B. Geloun, R. Gurau, and V. Rivasseau, “EPRL/FK group field theory,” Europhys. Lett., 92, 60008 (2010); arXiv:1008.0354v1 [hep-th] (2010)

    Article  Google Scholar 

  63. R. Gurau and V. Rivasseau, “The 1/N expansion of colored tensor models in arbitrary dimension,” Europhys. Lett., 95, 50004 (2011); arXiv:1101.4182v1 [gr-qc] (2011)

    Article  ADS  Google Scholar 

  64. V. Bonzom, R. Gurau, A. Riello, and V. Rivasseau, “Critical behavior of colored tensor models in the large N limit,” Nucl. Phys. B, 853, 174–195 (2011); arXiv:1105.3122v1 [hep-th] (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. V. Bonzom, R. Gurau, and V. Rivasseau, “Random tensor models in the large N limit: Uncoloring the colored tensor models,” Phys. Rev. D, 85, 084037 (2012); arXiv:1202.3637v1 [hep-th] (2012)

    Article  ADS  Google Scholar 

  66. R. Gurau, “A generalization of the Virasoro algebra to arbitrary dimensions,” Nucl. Phys. B, 852, 592–614 (2011); arXiv:1105.6072v1 [hep-th] (2011); “The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders,” Nucl. Phys. B, 865, 133–147 (2012); “The complete 1/N expansion of a SYK-like tensor model,” arXiv:1203.4965v1 [hep-th] Nucl. Phys. B, 916, 386–401 (2017); arXiv:1611.04032v3 [hep-th] (2016); “Quenched equals annealed at leading order in the colored SYK model,” Europhys. Lett., 119, 30003 (2017); arXiv:1702.04228v3 [hep-th] (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. V. Bonzom, “Revisiting random tensor models at large N via the Schwinger–Dyson equations,” JHEP, 1303, 160 (2013); arXiv:1208.6216v1 [hep-th] (2012); “New 1/N expansions in random tensor models,” JHEP, 1306, 062 (2013); arXiv:1211.1657v2 [hep-th] (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. E. Witten, “An SYK-like model without disorder,” arXiv:1610.09758v2 [hep-th] (2016)

    Google Scholar 

  69. I. R. Klebanov and G. Tarnopolsky, “Uncolored random tensors, melon diagrams, and the Sachdev–Ye–Kitaev models,” Phys. Rev. D, 95, 046004 (2017); arXiv:1611.08915v5 [hepth] (2016)

    Article  ADS  MathSciNet  Google Scholar 

  70. S. Carrozza and A. Tanasa, “O(N) random tensor models,” Lett. Math. Phys., 106, 1531–1559 (2016); arXiv:1512.06718v2 [math-ph] (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. A. Jevicki, K. Suzuki, and J. Yoon, “Bi-local holography in the SYK model,” JHEP, 1607, 007 (2016); arXiv:1603.06246v7 [hep-th] (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. H. Itoyama, A. Mironov, and A. Morozov, “Rainbow tensor model with enhanced symmetry and extreme melonic dominance,” Phys. Lett. B, 771, 180–188 (2017); arXiv:1703.04983v2 [hep-th] (2017)

    Article  ADS  MATH  Google Scholar 

  73. S. R. Das, A. Jevicki, and K. Suzuki, “Three dimensional view of the SYK/AdS duality,” JHEP, 1709, 017 (2017); arXiv:1704.07208v2 [hep-th] (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. K. Bulycheva, I. R. Klebanov, A. Milekhin, and G. Tarnopolsky, “Spectra of operators in large N tensor models,” Phys. Rev. D, 97, 026016 (2018); arXiv:1707.09347v3 [hep-th] (2017)

    Article  ADS  MathSciNet  Google Scholar 

  75. P. Diaz and J. A. Rosabal, “Spontaneous symmetry breaking in tensor theories,” JHEP, 1901, 094 (2019); arXiv:1809.10153v2 [hep-th] (2018); “Chiral symmetry breaking generalizes in tensor theories,” arXiv:1810.02520v1 [hep-th] (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. I. Gelfand, M. Kapranov, and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, Mass. (1994)

    Book  MATH  Google Scholar 

  77. V. Dolotin and A. Morozov, Introduction to Non-Linear Algebra, World Scientific, Singapore (2007); arXiv:hep-th/0609022v4 (2006)

    Book  MATH  Google Scholar 

  78. A. Yu. Morozov and Sh. R. Shakirov, “New and old results in resultant theory,” Theor. Math. Phys., 163, 587–617 (2010); arXiv:0911.5278v1 [math-ph] (2009).

    Article  MATH  Google Scholar 

  79. A. Mironov and A. Morozov, “Sum rules for characters from character-preservation property of matrix models,” JHEP, 1808, 163 (2018); arXiv:1807.02409v1 [hep-th] (2018); “On the complete perturbative solution of one-matrix models,” Phys. Lett. B, 771, 503–507 (2017); arXiv:1705.00976v2 [hep-th] (2017); “Correlators in tensor models from character calculus,” Phys. Lett. B, 774, 210–216 (2017); arXiv:1706.03667v2 [hep-th] (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. A. Morozov, A. Popolitov, and Sh. Shakirov, “On (q, t)-deformation of Gaussian matrix model,” Phys. Lett. B, 784, 342–344 (2018); arXiv:1803.11401v3 [hep-th] (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. H. Itoyama, A. Mironov, and A. Morozov, “From Kronecker to tableau pseudo-characters in tensor models,” Phys. Lett. B, 788, 76–81 (2019); arXiv:1808.07783v1 [hep-th] (2018); “Ward identities and combinatorics of rainbow tensor models,” JHEP, 1706, 115 (2017); arXiv:1704.08648v2 [hep-th] (2017); “Cut and join operator ring in tensor models,” Nucl. Phys. B, 932, 52–118 (2018); arXiv:1710.10027v1 [hep-th] (2017)

    Article  ADS  MATH  Google Scholar 

  82. R. de Mello Koch and S. Ramgoolam, “From matrix models and quantum fields to Hurwitz space and the absolute Galois group,” arXiv:1002.1634v1 [hep-th] (2010)

    Google Scholar 

  83. J. Ben Geloun and S. Ramgoolam, “Counting tensor model observables and branched covers of the 2-sphere,” arXiv:1307.6490v1 [hep-th] (2013)

    MATH  Google Scholar 

  84. P. Diaz and S.-J. Rey, “Orthogonal bases of invariants in tensor models,” JHEP, 1802, 089 (2018); arXiv:1706.02667v2 [hep-th] (2017); “Invariant operators, orthogonal bases, and correlators in general tensor models,” Nucl. Phys. B, 932, 254–277 (2018); arXiv:1801.10506v4 [hep-th] (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. R. de Mello Koch, D. Gossman, and L. Tribelhorn, “Gauge invariants, correlators, and holography in bosonic and fermionic tensor models,” JHEP, 1709, 011 (2017); arXiv:1707.01455v3 [hep-th] (2017)

    Article  MathSciNet  MATH  Google Scholar 

  86. J. Ben Geloun and S. Ramgoolam, “Tensor models, Kronecker coefficients, and permutation centralizer algebras,” JHEP, 1711, 092 (2017); arXiv:1708.03524v2 [hep-th] (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. P. Diaz, “Tensor and matrix models: A one-night stand or a lifetime romance?” JHEP, 1806, 140 (2018); arXiv:1803.04471v3 [hep-th] (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Morozov.

Additional information

This research is supported in part by the Foundation for the Advancement of Theoretical Physics “BASIS” and the Russian Foundation for Basic Research (Grant No. 16-02-01021 and Joint Grant Nos. 18-51-05015-Arm, 18-51-45010-Ind, and 17-51-50051-YaF).

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 200, No. 1, pp. 19–49, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.Y. Cut-and-Join Operators and Macdonald Polynomials From the 3-Schur Functions. Theor Math Phys 200, 938–965 (2019). https://doi.org/10.1134/S004057791907002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057791907002X

Keywords

Navigation