Skip to main content
Log in

Nonchiral Bosonization of Strongly Inhomogeneous Luttinger Liquids

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Nonchiral bosonization (NCBT) is a nontrivial modification of the standard Fermi—Bose correspondence in one spatial dimension done to facilitate studying strongly inhomogeneous Luttinger liquids where the properties of free fermions plus the source of inhomogeneities are reproduced exactly. We introduce the NCBT formalism and discuss limit case checks, fermion commutation rules, point-splitting constraints, etc. We expand the Green’s functions obtained from NCBT in powers of the fermion—fermion interaction strength (only short-range forward scattering) and compare them with the corresponding terms obtained using standard fermionic perturbation theory. Finally, we substitute the Green’s functions obtained from NCBT in the Schwinger—Dyson equation, which is the equation of motion of the Green’s functions and serves as a nonperturbative confirmation of the method. We briefly discuss some other analytic approaches such as functional bosonization and numerical techniques like the density-matrix renormalization group, which can be used to obtain the correlation functions in one dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-I. Tomonaga, “Remarks on Bloch’s method of sound waves applied to many-fermion problems,” Progr. Theor. Phys., 5, 544–569 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Luttinger, “An exactly soluble model of a many-fermion system,” J. Math. Phys., 4, 1154–1162 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  3. D. C. Mattis and E. H. Lieb, “Exact solution of a many-fermion system and its associated boson field,” J. Math. Phys., 6, 304–312 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  4. I. E. Dzyaloshinskii and A. I. Larkin, “Correlation functions for a one-dimensional fermi system with long-range interaction (Tomonaga model),” Sov. Phys. JETP, 38, 202–208 (1974).

    ADS  Google Scholar 

  5. K. B. Efetov and A. I. Larkin, “Correlation functions in one-dimensional systems with a strong interaction,” Sov. Phys. JETP, 42, 390–396 (1976).

    ADS  Google Scholar 

  6. F. D. M. Haldane, “‘Luttinger liquid theory’ of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas,” J. Phys. C, 14, 2585–2610 (1981).

    Article  ADS  Google Scholar 

  7. T. Giamarchi, Quantum Physics in One Dimension (Intl. Ser. Monogr. Phys., Vol. 121), Oxford Univ. Press, Oxford (2004).

    MATH  Google Scholar 

  8. G. S. Setlur, Dynamics of Classical and Quantum Fields: An Introduction, CRC Press, Boca Raton, Fla. (2013).

    Book  Google Scholar 

  9. J. P. Das and G. S. Setlur, “The quantum steeplechase,” Internat. J. Modern Phys. A, 33, 1850174 (2018); arXiv:1608.05826v5 [cond-mat.str-el] (2016).

    Article  ADS  MATH  Google Scholar 

  10. C. Kane and M. P. Fisher, “Transport in a one-channel Luttinger liquid,” Phys. Rev. Lett., 68, 1220–1223 (1992).

    Article  ADS  Google Scholar 

  11. A. Schwartz, M. Dressel, G. Gruner, V. Vescoli, L. Degiorgi, and T. Giamarchi, “On-chain electrodynamics of metallic (TMTSF)2 X salts: Observation of Tomonaga–Luttinger liquid response,” Phys. Rev. B, 58, 1261–1271 (1998); arXiv:cond-mat/9801198v3 (1998).

    Article  ADS  Google Scholar 

  12. M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature, 397, 598–601 (1999); arXiv:cond-mat/9812233v1 (1998).

    Article  ADS  Google Scholar 

  13. O. Auslaender, A. Yacoby, R. De Picciotto, K. Baldwin, L. Pfeiffer, and K. West, “Experimental evidence for resonant tunneling in a Luttinger liquid,” Phys. Rev. Lett., 84, 1764–1768 (2000).

    Article  ADS  Google Scholar 

  14. J. P. Das and G. S. Setlur, “The one step fermionic ladder,” Phys. E, 94, 216–230 (2017); arXiv:1704.01710v4 [cond-mat.str-el] (2017).

    Article  Google Scholar 

  15. J. P. Das and G. S. Setlur, “Ponderous impurities in a Luttinger liquid,” Europhys. Lett., 123, 27002 (2018); arXiv:1709.06728v3 [cond-mat.mes-hall] (2017).

    Article  ADS  Google Scholar 

  16. F. J. Dyson, “The S matrix in quantum electrodynamics,” Phys. Rev., 75, 1736–1755 (1949).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. J. Schwinger, “On the Green’s functions of quantized fields: I,” Proc. Nat. Acad. Sci. USA, 37, 452–455 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. H. C. Fogedby, “Correlation functions for the Tomonaga model,” J. Phys. C, 9, 3757–3773 (1976).

    Article  ADS  Google Scholar 

  19. D. K. K. Lee and Y. Chen, “Functional bosonisation of the Tomonaga–Luttinger model,” J. Phys. A: Math. Gen., 21, 4155–4171 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  20. V. I. Fernández and C. M. Naon, “Friedel oscillations in a Luttinger liquid with long-range interactions,” Phys. Rev. B, 64, 033402 (2001).

    Article  ADS  Google Scholar 

  21. I. V. Lerner, B. L. Althsuler, V. I. Fal’ko, and T. Giamarchi, eds., Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems (NATO Sci. Ser., Vol. 72), Springer, Dordrecht (2002).

    MATH  Google Scholar 

  22. U. Schollwöck, “The density-matrix renormalization group,” Rev. Modern Phys., 77, 259–315 (2005); arXiv:cond-mat/0409292v1 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. Stone, ed., Bosonization, World Scientific, Singapore (1994).

    Google Scholar 

  24. J. Eisert, “Entanglement and tensor network states,” arXiv:1308.3318v2 [quant-ph] (2013).

  25. N. Bultinck, D. J. Williamson, J. Haegeman, and F. Verstraete, “Fermionic matrix product states and one-dimensional topological phases,” Phys. Rev. B, 95, 075108 (2017); arXiv:1610.07849v2 [cond-mat.str-el] (2016).

    Article  ADS  Google Scholar 

  26. M. B. Hastings, “Entropy and entanglement in quantum ground states,” Phys. Rev. B, 76, 035114 (2007); arXiv:cond-mat/0701055v1 (2007).

    Article  ADS  Google Scholar 

  27. F. Verstraete, V. Murg, and J. I. Cirac, “Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems,” Adv. Phys., 57, 143–224 (2008); arXiv:0907.2796v1 [quant-ph] (2009).

    Article  ADS  Google Scholar 

  28. M. B. Hastings, “An area law for one-dimensional quantum systems,” J. Stat. Mech., 2007, P08024 (2007).

    MathSciNet  Google Scholar 

  29. M. Andersson, M. Boman, and S. Östlund, “Density-matrix renormalization group for a gapless system of free fermions,” Phys. Rev. B, 59, 10493–10503 (1999); arXiv:cond-mat/9810093v1 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors express deepest gratitude to the lead developer of the ITensor, E. Miles Stoudenmire, who has always been very helpful whenever approached with queries and doubts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Setlur.

Additional information

This research was supported in part by the Department of Science and Technology, Government of India (DST/SERC: SR/S2/CMP/46 2009).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 199, No. 2, pp. 302–329, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, J.P., Chowdhury, C. & Setlur, G.S. Nonchiral Bosonization of Strongly Inhomogeneous Luttinger Liquids. Theor Math Phys 199, 736–760 (2019). https://doi.org/10.1134/S0040577919050106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919050106

Keywords

Navigation