Skip to main content
Log in

Construction of Exact Solutions for Equilibrium Configurations of the Boundary of a Conducting Liquid Deformed By an External Electric Field

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In a two-dimensional plane-symmetric formulation, we consider the problem of the equilibrium configurations of the free surface of a conducting capillary liquid placed in an external electric field. We find a one-parameter family of exact solutions of the problem according to which the fluid takes the shape of a blade. Such a configuration provides formally unlimited local field amplification: the field strength is maximum at the edge of the blade and drops to zero at the periphery. For a given potential difference between the liquid and the flat electrode located above it, we find threshold values of the electric field strength at the edge of the liquid blade, the radius of curvature of the edge, and the distance from the edge to the electrode limiting the region of existence of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Tonks, “A theory of liquid surface rupture by a uniform electric field,” Phys. Rev., 48, 562–568 (1935).

    Article  ADS  Google Scholar 

  2. Ya. Frenkel, “On the Tonks’ theory of the rupture of the surface of liquid by a uniform electric field in vacuum,” Soviet JETP, 6, 348–350 (1936).

    MATH  Google Scholar 

  3. J. R. Melcher, Field-Coupled Surface Waves, MIT Press, Cambridge, Mass. (1963).

    Google Scholar 

  4. A. A. Kuznetsov and M. D. Spektor, “Existence of a hexagonal relief on the surface of a dielectric fluid in an external electrical field,” Soviet JETP, 44, 136–141 (1976).

    ADS  Google Scholar 

  5. N. M. Zubarev and O. V. Zubareva, “Dynamics of the free surface of a conducting liquid in a near-critical electric field,” Tech. Phys., 46, 806–814 (2001).

    Article  Google Scholar 

  6. M. D. Gabovich, “Liquid-metal ion emitters,” Sov. Phys. Usp., 26, 447–455 (1983).

    Article  ADS  Google Scholar 

  7. A. I. Zhakin, “Electrohydrodynamics of charged surfaces,” Phys. Usp., 56, 141–163 (2013).

    Article  ADS  Google Scholar 

  8. N. M. Zubarev, “Formation of root singularities on the free surface of a conducting fluid in an electric field,” Phys. Lett. A, 243, 128–131 (1998)

    Article  ADS  Google Scholar 

  9. L. M. Baskin, A. V. Batrakov, S. A. Popov, and D. I. Proskurovsky, “Electrohydrodynamic phenomena on the explosive-emission liquid-metal cathode,” IEEE Trans. Dielectr. Electr. Insul., 2, 231–236 (1995).

    Article  Google Scholar 

  10. W. Driesel, C. Dietzsch, and R. Mühle, “In situ observation of the tip shape of AuGe liquid alloy ion sources using a high voltage transmission electron microscope,” J. Vac. Sci. Technol. B, 14, 3367–380 (1996).

    Article  Google Scholar 

  11. N. M. Zubarev, “Formation of conic cusps at the surface of liquid metal in electric field,” JETP Lett., 73, 544–548 (2001).

    Article  ADS  Google Scholar 

  12. V. B. Shikin, “Instability and reconstruction of a charged liquid surface,” Phys. Usp., 54, 1203–1225 (2011).

    Article  ADS  Google Scholar 

  13. A. A. Levchenko, G. V. Kolmakov, L. P. Mezhov-Deglin, M. G. Mikhailov, and A. B. Trusov, “Static phenomena at the charged surface of liquid hydrogen,” Low Temperature Phys., 25, 242 (1999).

    Article  ADS  Google Scholar 

  14. J. W. S. Rayleigh, “X X. On the equilibrium of liquid conducting masses charged with electricity,” Philos. Mag., 14, 184–186 (1882).

    Article  Google Scholar 

  15. M. J. Miksis, “Shape of a drop in an electric field,” Phys. Fluids, 24, 1967–1972 (1981).

    Article  ADS  MATH  Google Scholar 

  16. N. A. Pelekasis, J. A. Tsamopoulos, and G. D. Manolis, “Equilibrium shapes and stability of charged and conducting drops,” Phys. Fluids A, 2, 1328–1340 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. N. M. Zubarev and O. V. Zubareva, “Equilibrium configurations of uncharged conducting liquid jets in a transverse electric field,” Phys. A, 385, 35–45 (2007).

    Article  Google Scholar 

  18. G. I. Taylor, “Disintegration of water drops in an electric field,” Proc. Roy. Soc. London Ser. A, 280, 383–397 (1964).

    Article  ADS  MATH  Google Scholar 

  19. N. M. Zubarev, “Exact solution of the problem of the equilibrium configuration of the charged surface of a liquid metal,” JETP, 89, 1078–1085 (1999)

    Article  ADS  Google Scholar 

  20. “Exact solution for the steady-state surface profile of a liquid metal in an external electric field,” Tech. Phys. Lett., 25, 920–921 (1999).

  21. N. M. Zubarev, “On the problem of the existence of a singular stationary profile for the charged surface of a conducting liquid,” Tech. Phys. Lett., 27, 217–219 (2001).

    Article  ADS  Google Scholar 

  22. M. I. Gurevich, The Theory of Jets in an Ideal Fluid [in Russian], Nauka, Moscow (1979); English transl. prev. ed. (Intl. Series Monogr. Pure Appl. Math., Vol. 93), Pergamon, Oxford (1966).

    Google Scholar 

  23. G. D. Crapper, “An exact solution for progressive capillary waves of arbitrary amplitude,” J. Fluid Mech., 2, 532–540 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. N. M. Zubarev, O. V. Zubareva, and P. K. Ivanov, “Exact solutions for equilibrium surface configurations of a conducting liquid in the electric field of a charged straight filament,” Tech. Phys. Lett., 35, 967–969 (2009).

    Article  ADS  Google Scholar 

  25. N. B. Volkov, M. Zubarev, and V. Zubareva, “Exact solutions to the problem on the shape of an uncharged conducting liquid jet in a transverse electric field,” JETP, 122, 950–955 (2016).

    Article  ADS  Google Scholar 

  26. J. A. Shercliff, “Magnetic shaping of molten metal columns,” Proc. Roy. Soc. London Ser. A, 375, 455–473 (1981).

    Article  ADS  Google Scholar 

  27. W. Kinnersley, “Exact large amplitude capillary waves on sheets of fluid,” J. Fluid Mech., 77, 229–241 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. G. Blyth and J.-M. Vanden-Broeck, “Magnetic shaping of a liquid metal column and deformation of a bubble in a vortex flow,” SIAM J. Appl. Math., 66, 174–186 (2005).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Zubarev.

Additional information

This research was performed in the framework of the theme of state assignment No. 0389-2015-0023 with support by the Russian Foundation for Basic Research (Project Nos. 16-08-00228 and 17-08-00430), the Presidium of the Russian Academy of Sciences (Programs 2 and 11), and the Presidium of the Ural Branch, RAS (Project No. 18-2-2-15).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 196, No. 3, pp. 503–516, September, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubarev, N.M., Zubareva, O.V. Construction of Exact Solutions for Equilibrium Configurations of the Boundary of a Conducting Liquid Deformed By an External Electric Field. Theor Math Phys 196, 1380–1391 (2018). https://doi.org/10.1134/S0040577918090106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918090106

Keywords

Navigation