Skip to main content
Log in

Bose–Einstein Condensate and Singularities of the Frequency Dispersion of the Permittivity in a Disordered Coulomb System

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2018

This article has been updated

Abstract

In the framework of linear response theory, we consider the frequency dispersion of the permittivity of a disordered Coulomb system in the presence of the one-particle Bose–Einstein condensate for nuclei. We show that the superconductivity of nuclei exists in such a system and is manifested in the Meissner effect for a weakly nonuniform low-frequency electromagnetic field. The obtained result offers an opportunity to solve the problem of the presence of the one-particle Bose–Einstein condensate in superfluid He-II based on direct experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 06 June 2018

    The first author should be V. B. Bobrov.

References

  1. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics: Part 2. Theory of the Condensed State [in Russian], Nauka, Moscow (1978); English transl., Pergamon, Oxford (1980).

    Google Scholar 

  2. B. V. Svistunov, E. S. Babaev, and N. V. Prokof’ev, Superfluid States of Matter, CRC Press, Boca Raton, Fla. (2015).

    Book  MATH  Google Scholar 

  3. E. A. Pashitskii, S. V. Mashkevich, and S. I. Vilchynskyy, “Superfluid Bose liquid with a suppressed BEC and an intensive pair coherent condensate as a model of 4He,” Phys. Rev. Lett., 89, 075301 (2002).

    Article  ADS  Google Scholar 

  4. A. S. Rybalko, “Observation of the electric induction due to a second-sound wave in He II,” Low Temp. Phys., 30, 994 (2004).

    Article  ADS  Google Scholar 

  5. A. Rybalko, S. Rubets, E. Rudavskii, V. Tikhly, and S. Tarapov, R. Golovashchenko, and V. Derkach, “Resonance absorption of microwaves in He II: Evidence for roton emission,” Phys. Rev. B, 76, 140503 (2007).

    Article  ADS  Google Scholar 

  6. E. A. Pashitskii and S. M. Ryabchenko, “On the cause of the electrical activity of superfluid helium upon excitation of a second sound wave and normal-component velocity oscillations in it,” Low Temp. Phys., 33, 8 (2007).

    Article  ADS  Google Scholar 

  7. S. I. Shevchenko and A. S. Rukin, “On the electric activity of superfluid systems,” JETP Lett., 90, 42–46 (2009).

    Article  ADS  Google Scholar 

  8. W.-D. Kraeft, D. Kremp, W. Ebeling, and G. Röpke, Quantum Statistics of Charged Particle Systems, Akademie-Verlag, Berlin (1986).

    Book  Google Scholar 

  9. J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, “The properties of hydrogen and helium under extreme conditions,” Rev. Modern Phys., 84, 1607–1653 (2012).

    Article  ADS  Google Scholar 

  10. A. V. Burenin, “On the importance of the Born–Oppenheimer approximation in intramolecular dynamics,” Phys. Usp., 53, 713–724 (2010).

    Article  ADS  Google Scholar 

  11. V. B. Bobrov, “Statistical theory of rarified gases in the Coulomb model of substance: Adiabatic approximation and initial atoms,” Theor. Math. Phys., 178, 374–386 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. B. Bobrov and S. A. Trigger, “On the properties of systems with Bose–Einstein condensate in the Coulomb model of matter,” Bull. Lebedev Phys. Inst., 42, 13–16 (2015).

    Article  ADS  Google Scholar 

  13. O. Penrose and L. Onsager, “Bose–Einstein condensation and liquid helium,” Phys. Rev., 104, 576–584 (1956).

    Article  MATH  ADS  Google Scholar 

  14. C. N. Yang, “Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors,” Rev. Modern Phys., 34, 694–704 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  15. N. N. Bogolubov and N. N. Bogolubov Jr., Introduction to Quantum Statistical Mechanics, World Scientific, Singapore (1982).

    Book  MATH  Google Scholar 

  16. V. B. Bobrov, S. A. Trigger, and A. G. Zagorodny, “Off-diagonal long-range order and an inhomogeneous Bose–Einstein condensate,” Dokl. Phys., 60, 147–149 (2015).

    Article  ADS  Google Scholar 

  17. V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-Like Media [in Russian], Gosatomizdat, Moscow (1961).

    Google Scholar 

  18. H. Reinholz, R. Redmer, G. Röpke, and A. Wierling, “Long-wavelength limit of the dynamical local-field factor and dynamical conductivity of a two-component plasma,” Phys. Rev. E, 62, 5648–5666 (2000).

    Article  ADS  Google Scholar 

  19. H. Reinholz, Yu. Zaporoghets, V. Mintsev, V. Fortov, I. Morozov, and G. Röpke, “Frequency-dependent reflectivity of shock-compressed xenon plasmas,” Phys. Rev. E, 68, 036403 (2003).

    Article  ADS  Google Scholar 

  20. P. C. Martin, “Sum rules, Kramers–Kronig relations, and transport coefficients in charged systems,” Phys. Rev., 161, 143–155 (1967).

    Article  ADS  Google Scholar 

  21. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics [in Russian], Nauka, Moscow (1971); English transl., Consultants Bureau, New York (1974).

    Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 5, Statistical Physics: Part 1, Nauka, Moscow (1976); English transl., Pergamon, Oxford (1980).

    Google Scholar 

  23. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloschinskii, Methods of Quantum Field Theory in Statistical Physics [in Russian], Fizmatlit, Moscow (1962); English transl.: Quantum Field Theory in Statistical Physics, Pergamon, New York (1965).

    Google Scholar 

  24. V. B. Bobrov, V. D. Ozrin, and S. A. Trigger, “Some peculiarities of the long-wavelength conductivity limit in a charged particle system,” Phys. A, 164, 453–468 (1990).

    Article  Google Scholar 

  25. V. B. Bobrov, N. I. Klyuchnikov, and S. A. Triger, “Exact relations for structure factor of a Coulomb system,” Theor. Math. Phys., 89, 1198–1208 (1991).

    Article  Google Scholar 

  26. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics [in Russian], Vol. 10, Physical Kinetics, Nauka, Moscow (1979); English transl., Pergamon, New York (1981).

    Google Scholar 

  27. V. B. Bobrov, S. A. Trigger, and A. G. Zagorodny, “Kubo formula for frequency dispersion of dielectric permittivity and static conductivity of the Coulomb system,” Phys. Lett. A, 375, 84–87 (2010).

    Article  MATH  ADS  Google Scholar 

  28. R. Kubo, “Statistical-mechanical theory of irreversible processes: I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Japan, 12, 570–586 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  29. V. Ambegoaker and W. Kohn, “Electromagnetic properties of insulators: I,” Phys. Rev., 117, 423–431 (1960).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 8, Electrodynamics of Continuous Matter, Nauka, Moscow (1982); English transl. prev. ed., Pergamon, New York (1979).

    Google Scholar 

  31. V. B. Bobrov and S. A. Trigger, “The true dielectric and ideal conductor in the theory of the dielectric function of the Coulomb system,” J. Phys. A: Math. Theor., 43, 365002 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. B. Bobrov, “Features of the dielectric permittivity of the Coulomb system and the true dielectric state,” Phys. Rev. E, 86, 026401 (2012).

    Article  ADS  Google Scholar 

  33. V. B. Bobrov, S. A. Trigger, G. J. F. van Heijst, and P. P. J. M. Schram, “Kramers–Kronig relations for the dielectric function and the static conductivity of Coulomb systems,” Europhys. Lett., 90, 10003 (2010).

    Article  ADS  Google Scholar 

  34. L. D. Landau, “The theory of superfluidity of helium II [in Russian],” Zh. Eksp. Teor. Fiz., 11, 592–624 (1941).

    ADS  Google Scholar 

  35. L. D. Landau, “The theory of superfluidity of helium II,” J. Phys. (USSR), 5, 71–90 (1948).

    Google Scholar 

  36. D. V. Shirkov, “Imagery of symmetry in current physics,” Theor. Math. Phys., 170, 239–248 (2012).

    Article  MathSciNet  Google Scholar 

  37. A. S. Rybalko, S. P. Rubets, E. Ya. Rudavskii, V. A. Tikhiy, Yu. M. Poluectov, R. V. Golovachenko, V. N. Derkach, S. I. Tarapov, and O. V. Usatenko, “Resonance excitation of single rotons in He II by an electromagnetic wave: Spectral line shape,” Low Temp. Phys., 35, 837–842 (2009).

    Article  ADS  Google Scholar 

  38. Yu. M. Poluektov, “Absorption of electromagnetic field energy by the superfluid system of atoms with a dipole moment,” Low Temp. Phys., 40, 389–396 (2014).

    Article  ADS  Google Scholar 

  39. V. B. Bobrov, A. G. Zagorodny, and S. A. Trigger, “Coulomb interaction potential and Bose–Einstein condensate,” Low Temp. Phys., 41, 901–908 (2015).

    Article  ADS  Google Scholar 

  40. M. Wolfke and W. H. Keesom, “On the electrical resistance of liquid helium,” Phys., 3, 823–824 (1936).

    ADS  Google Scholar 

  41. J. R. Schrieffer, Theory of Superconductivity, Perseus Books, Reading, Mass. (1999).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bobrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrov, V.V., Trigger, S.A. Bose–Einstein Condensate and Singularities of the Frequency Dispersion of the Permittivity in a Disordered Coulomb System. Theor Math Phys 194, 404–414 (2018). https://doi.org/10.1134/S004057791803008X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057791803008X

Keywords

Navigation