Skip to main content
Log in

Darboux Transformation for a Semidiscrete Short-Pulse Equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We define a Darboux transformation in terms of a quasideterminant Darboux matrix on the solutions of a semidiscrete short-pulse equation. We also give a quasideterminant formula for N-loop soliton solutions and obtain a general expression for the multiloop solution expressed in terms of quasideterminants. Using quasideterminants properties, we find explicit solutions and as an example compute one- and two-loop soliton solutions in explicit form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Grammaticos, T. Tamizhmani, and Y. Kosmann-Schwarzbach, eds., Discrete Integrable Systems (Lect. Notes Phys., Vol. 644), Springer, Berlin (2004).

  2. Y. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach (Progr. Math., Vol. 219), Birkh äuser, Basel (2003).

  3. M. J. Ablowitz and J. F. Ladik, “Nonlinear differential–difference equations and Fourier analysis,” J. Math. Phys., 17, 1011–1018 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M. J. Ablowitz and J. F. Ladik, “A nonlinear difference scheme and inverse scattering,” Stud. Appl. Math., 55, 213–229 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Hirota, “Nonlinear partial difference equations: I. A difference analogue of the Korteweg–de Vries equation,” J. Phys. Soc. Japan, 43, 1424–1433 (1977).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. R. Hirota, “Nonlinear partial difference equations: II. Discrete-time Toda equation,” J. Phys. Soc. Japan, 43, 2074–2078 (1977).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. B. F. Feng, K. Maruno, and Y. Ohta, “Integrable discretizations of the short pulse equation,” J. Phys. A: Math. Theor., 43, 085203 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. B.-F. Feng, K. Maruno, and Y. Ohta, “Self-adaptive moving mesh schemes for short pulse type equations and their Lax pairs,” Pac. J. Math. Ind., 6, 8 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Schäfer and C. E. Wayne, “Propagation of ultra-short optical pulses in cubic nonlinear media,” Phys. D, 196, 90–105 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Chung, C. K. T. Jones, T. Schäfer, and C. E. Wayne, “Ultra-short pulses in linear and nonlinear media,” Nonlinearity, 18, 1351–1374 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A. Sakovich and S. Sakovich, “The short pulse equation is integrable,” J. Phys. Soc. Japan, 74, 239–241 (2005).

    Article  ADS  MATH  Google Scholar 

  12. A. Sakovich and S. Sakovich, “Solitary wave solutions of the short pulse equation,” J. Phys. A: Math. Gen., 39, L361–L367 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. B.-F. Feng, J. Inoguchi, K. Kajiwara, K. Maruno, and Y. Ohta, “Discrete integrable systems and hodograph transformations arising from motions of discrete plane curves,” J. Phys. A: Math. Theor., 44, 395201 (2011).

    Article  MATH  Google Scholar 

  14. V. K. Kuetche, T. B. Bouetou, and T. C. Kofane, “On two-loop soliton solution of the Schäfer–Wayne short-pulse equation using Hirota’s method and Hodnett–Moloney approach,” J. Phys. Soc. Japan, 76, 024004 (2007).

    Article  ADS  Google Scholar 

  15. Y. Matsuno, “Multiloop soliton and multibreather solutions of the short pulse model equation,” J. Phys. Soc. Japan, 76, 084003 (2007).

    Article  ADS  Google Scholar 

  16. U. Saleem and M. Hassan, “Darboux transformation and multisoliton solutions of the short pulse equation,” J. Phys. Soc. Japan, 81, 094008 (2012).

    Article  ADS  Google Scholar 

  17. L. Ling, B.-F. Feng, and Z. Zhu, “Multi-soliton, multi-breather, and higher order rogue wave solutions to the complex short pulse equation,” Phys. D, 327, 13–29 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Wajahat A. Riaz and M. ul Hassan, “Darboux transformation of a semi-discrete coupled dispersionless integrable system,” Commun. Nonlinear Sci. Numer. Simul., 48, 387–397 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  19. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991).

    Book  MATH  Google Scholar 

  20. M. Hassan, “Darboux transformation of the generalized coupled dispersionless integrable system,” J. Phys. A: Math. Theor., 42, 065203 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. I. M. Gel’fand and V. S. Retakh, “Determinants of matrices over noncommutative rings,” Funct. Anal. Appl., 25, No. 2, 91–102 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  22. I. M. Gelfand, S. Gelfand, V. M. Retakh, and R. L. Wilson, “Quasideterminants,” Adv. Math., 193, 56–141 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  23. C. X. Li and J. J. C. Nimmo, “Quasideterminant solutions of a non-Abelian Toda lattice and kink solutions of a matrix sine-Gordon equation,” Proc. Roy. Soc. London Ser. A, 464, 951–966 (2008); arXiv:0711.2594v2 [nlin.SI] (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Riaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wajahat, H., Riaz, A. & Hassan, M. Darboux Transformation for a Semidiscrete Short-Pulse Equation. Theor Math Phys 194, 360–376 (2018). https://doi.org/10.1134/S0040577918030042

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918030042

Keywords

Navigation