Skip to main content
Log in

Supercritical Anomalies and the Widom Line for the Isostructural Phase Transition in Solids

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The representation of the Widom line as a line of maximums of the correlation length and a whole set of thermodynamic response functions above the critical point were introduced to describe anomalies observed in water above the hypothetical critical point of the liquid-liquid transition. The supercritical region for the gas-liquid transition was also described later in terms of the Widom line. It is natural to assume that an analogue of the Widom line also exists in the supercritical region for the first-order isostructural transition in crystals, which ends at a critical point. We use a simple semiphenomenological model, close in spirit the van der Waals theory, to study the properties of the new Widom line. We calculate the thermodynamic response functions above the critical point of the isostructural transition and find their maximums determining the Widom line position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Balesku, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York (1975).

    Google Scholar 

  2. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Acad. Press, New York (1986).

    MATH  Google Scholar 

  3. V. V. Brazhkin and V. N. Ryzhov, “Van derWaals supercritical fluid: Exact formulas for special lines,” J. Chem. Phys., 135, 084503 (2011).

    Article  ADS  Google Scholar 

  4. V. V. Brazhkin and V. N. Ryzhov, “Erratum: Van der Waals supercritical fluid: exact formulas for special lines,” J. Chem. Phys., 145, 059901 (2016).

    Article  ADS  Google Scholar 

  5. A. Daanoun, C. F. Tejero, and M. Baus, “Van der Waals theory for solids,” Phys. Rev. E, 50, 2913–2924 (1994).

    Article  ADS  Google Scholar 

  6. E. Kiran, P. G. Debenedetti, and C. J. Peters, eds., Supercritical Fluids: Fundamentals and Applications (NATO Sci. Ser. E, Vol. 366), Kluwer Academic, Dordrecht (2000).

  7. V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin, and E. N. Tsiok, “Where is the supercritical fluid on the phase diagram?” Phys. Usp., 55, 1061–1079 (2012).

    Article  ADS  Google Scholar 

  8. H. Stanley, Introduction to Phase Transitions and Critical Phenomena, Clarendon, Oxford (1971).

    Google Scholar 

  9. L. Xu, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. H. Poole, E. Sciortino, and H. E. Stanley, “Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition,” Proc. Natl. Acad. Sci. USA, 102, 16558–16562 (2005).

    Article  ADS  Google Scholar 

  10. P. H. Poole, S. R. Becker, F. Sciortino, and F. W. Starr, “Dynamical behavior near a liquid–liquid phase transition in simulations of supercooled water,” J. Phys. Chem. B, 115, 14176–14183 (2011).

    Article  Google Scholar 

  11. G. Franzese and H. E. Stanley, “The Widom line of supercooled water,” J. Phys.: Condens. Matter, 19, 205126 (2007).

    ADS  Google Scholar 

  12. P. F. McMillan and E. H. Stanley, “Fluid phases: Going supercritical,” Nature Phys., 6, 479–480 (2010).

    Article  ADS  Google Scholar 

  13. G. G. Simeoni, T. Bryk, F. A. Gorelli, M. Krisch, G. Ruocco, M. Santoro, and T. Scopigno, “The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids,” Nature Phys., 6, 503–507 (2010).

    Article  ADS  Google Scholar 

  14. F. A. Gorelli, T. Bryk, M. Krisch, G. Ruocco, M. Santoro, and T. Scopigno, “Dynamics and thermodynamics beyond the critical point,” Sci. Rep., 3, 1203 (2013).

    Article  ADS  Google Scholar 

  15. V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, V. N. Ryzhov, and E. N. Tsiok, “Widom line for the liquid–gas transition in Lennard-Jones system,” J. Phys. Chem. B, 115, 14112–14115 (2011).

    Article  Google Scholar 

  16. V. V. Brazhkin, Yu. D. Fomin, V. N. Ryzhov, E. E. Tareyeva, and E. N. Tziok, “True Widom line for a square-well system,” Phys. Rev. E, 89, 042136 (2014).

    Article  ADS  Google Scholar 

  17. P. Gallo, D. Corradini, and M. Rovere, “Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl,” J. Chem. Phys., 139, 204503 (2013).

    Article  ADS  Google Scholar 

  18. G. Ruppeiner, A. Sahay, T. Sarkar, and G. Sengupta, “Thermodynamic geometry, phase transitions, and the Widom line,” Phys. Rev. E, 86, 052103 (2012).

    Article  ADS  Google Scholar 

  19. H.-O. May and P. Mausbach, “Riemannian geometry study of vapor–liquid phase equilibria and supercritical behavior of the Lennard-Jones fluid,” Phys. Rev. E, 85, 031201 (2012); Erratum, 86, 059905 (2012).

    Article  ADS  Google Scholar 

  20. Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok, and V. V. Brazhkin, “Thermodynamic properties of supercritical carbon dioxide: Widom and Frenkel lines,” Phys. Rev. E, 91, 022111 (2015).

    Article  ADS  Google Scholar 

  21. Y. D. Fomin, V. N. Ryzhov, E. N. Tsiok, V. V. Brazhkin, and K. Trachenko, “Dynamic transition in supercritical iron,” Sci. Rep., 4, 7194 (2014).

    Article  ADS  Google Scholar 

  22. Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok, and V. V. Brazhkin, “Dynamical crossover line in supercritical water,” Sci. Rep., 5, 14234 (2015).

    Article  ADS  Google Scholar 

  23. E. E. Tareyeva and V. N. Ryzhov, “Supercritical fluid of particles with a Yukawa potential: A new approximation for the direct correlation function and the Widom line,” Theor. Math. Phys., 189, 1806–1817 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Xia, A. L. Ruoff, and Y. K. Vohra, “Temperature dependence of the ω-bcc phase transition in zirconium metal,” Phys. Rev. B, 44, 10374–10376 (1991).

    Article  ADS  Google Scholar 

  25. P. Bolhuis and D. Frenkel, “Prediction of an expanded-to-condensed transition in colloidal crystals,” Phys. Rev. Lett., 72, 2211–2214 (1994).

    Article  ADS  Google Scholar 

  26. P. Bolhuis and D. Frenkel, “Isostructural solid-solid transition in crystalline systems with short-ranged interaction,” Phys. Rev. E, 50, 4880–4890 (1995).

    Article  ADS  Google Scholar 

  27. D. Frenkel, “Colloidal encounters: A matter of attraction,” Science, 314, 768–769 (2006).

    Article  Google Scholar 

  28. C. F. Tejero, A. Daanoun, H. N. W. Lekkerkerker, and M. Baus, “Phase diagrams of ‘simple’ fluids with extreme pair potentials,” Phys. Rev. Lett., 73, 752–755 (1994).

    Article  ADS  Google Scholar 

  29. C. F. Tejero, A. Daanoun, H. N. W. Lekkerkerker, and M. Baus, “Isostructural solid-solid transition of (colloidal) simple fluids,” Phys. Rev. E, 51, 558–566 (1995).

    Article  ADS  Google Scholar 

  30. C. Rascón, L. Mederos, and G. Navascués, “Solid-to-solid isostructural transition in the hard sphere/attractive Yukawa system,” J. Chem. Phys., 103, 9495 (1995).

    Article  Google Scholar 

  31. C. Rascón, L. Mederos, G. Navascués, and L. Mederos, “Phase transitions in systems with extremely shortranged attractions: A density-functional theory,” Phys. Rev. B, 51, 14899–14906 (1995).

    Article  ADS  Google Scholar 

  32. A. R. Denton and H. Löwen, “Isostructural solid–solid transitions in square–shoulder systems,” J. Phys.: Condens. Matter, 9, L1–L5 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Tareyeva.

Additional information

This research was supported by a grant from the Russian Science Foundation (Project No. 14-22-00093).

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 194, No. 1, pp. 175–184, January, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tareyeva, E.E., Fomin, Y.D., Tsiok, E.N. et al. Supercritical Anomalies and the Widom Line for the Isostructural Phase Transition in Solids. Theor Math Phys 194, 148–156 (2018). https://doi.org/10.1134/S0040577918010117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918010117

Keywords

Navigation