Skip to main content
Log in

Kulish–Sklyanin-type models: Integrability and reductions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We start with a Riemann–Hilbert problem (RHP) related to BD.I-type symmetric spaces SO(2r + 1)/S(O(2r − 2s+1) ⊗ O(2s)), s ≥ 1. We consider two RHPs: the first is formulated on the real axis R in the complexplane; the second, on RiR. The first RHP for s = 1 allows solving the Kulish–Sklyanin (KS) model; the second RHP is related to a new type of KS model. We consider an important example of nontrivial deep reductions of the KS model and show its effect on the scattering matrix. In particular, we obtain new two-component nonlinear Schrödinger equations. Finally, using the Wronski relations, we show that the inverse scattering method for KS models can be understood as generalized Fourier transforms. We thus find a way to characterize all the fundamental properties of KS models including the hierarchy of equations and the hierarchy of their Hamiltonian structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. P. Kulish and E. K. Sklyanin, “O(N)-invariant nonlinear Schrödinger equation–a new completely integrable system,” Phys. Lett. A, 84, 349–352 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” JETP, 38, 248–253 (1974).

    ADS  Google Scholar 

  3. J. Ieda, T. Miyakawa, and M. Wadati, “Exact analysis of soliton dynamics in spinor Bose–Einstein condensates,” Phys. Rev. Lett., 93, 194102 (2004).

    Article  ADS  Google Scholar 

  4. L. Li, Z. Li, B. A. Malomed, D. Mihalache, and W. M. Liu, “Exact soliton solutions and nonlinear modulation instability in spinor Bose–Einstein condensates,” Phys. Rev. A, 72, 033611 (2005).

    Article  ADS  Google Scholar 

  5. C. V. Ciobanu, S.-K. Yip, and T.-L. Ho, “Phase diagrams of F=2 spinor Bose–Einstein condensates,” Phys. Rev. A, 61, 033607 (2000).

    Article  ADS  Google Scholar 

  6. T. Ohmi and K. Machida, “Bose–Einstein condensation with internal degrees of freedom in alkali atom gases,” J. Phys. Soc. Japan, 67, 1822–1825 (1998).

    Article  ADS  Google Scholar 

  7. T.-L. Ho, “Spinor Bose condensates in optical traps,” Phys. Rev. Lett., 81, 742–745 (1998).

    Article  ADS  Google Scholar 

  8. A. P. Fordy and P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras,” Commun. Math. Phys., 89, 427–443 (1983).

    Article  ADS  MATH  Google Scholar 

  9. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. I. Pitaevskii, Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl., Plenum, New York (1984).

    MATH  Google Scholar 

  10. L. A. Takhtadjan and L. D. Faddeev, Hamiltonian Method in the Theory of Solitons [in Russian], Nauka, Moscow (1986); English transl.: L. D. Faddeev and L. A. Takhtadjan, Springer, Berlin (1987).

    Google Scholar 

  11. M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (London Math. Soc. Lect. Note Ser., Vol. 302), Cambridge Univ. Press, Cambridge (2004).

    MATH  Google Scholar 

  12. V. S. Gerdjikov, “Basic aspects of soliton theory,” in: Geometry, Integrability, and Quantization (Proc. 6th Intl. Conf., Sts. Constantine and Elena, Bulgaria, 3–10 June 2004, I. M. Mladenov and A. C. Hirshfeld, eds.), Softex, Sofia (2005), pp. 78–125; arXiv:nlin/0604004v1 (2006).

    Google Scholar 

  13. V. S. Gerdjikov, “Algebraic and analytic aspects of soliton type equations,” in: The Legacy of the Inverse Scattering Transform in Applied Mathematics (Contemp. Math., Vol. 301, J. Bona, R. Choudhury, and D. Kaup, eds.), Amer. Math. Soc., Providence, R. I. (2002), pp. 35–68; arXiv:nlin/0206014v1 (2002).

    Chapter  Google Scholar 

  14. V. S. Gerdjikov, G. Vilasi, and A. B. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods (Lect. Notes Phys., Vol. 748), Springer, Berlin (2008).

    Book  MATH  Google Scholar 

  15. V. E. Zakharov and A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem: I,” Funct. Anal. Appl., 8, 226–235 (1974).

    Article  MATH  Google Scholar 

  16. V. E. Zakharov and A. V. Mikhailov, “On the integrability of classical spinor models in two-dimensional space–time,” Commun. Math. Phys., 74, 21–40 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  17. R. I. Ivanov, “On the dressing method for the generalized Zakharov–Shabat system,” Nucl. Phys. B, 694, 509–524 (2004).

    Article  ADS  MATH  Google Scholar 

  18. V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, and N. A. Kostov, “N-wave interactions related to simple Lie algebras: Z2-reductions and soliton solutions,” Inverse Problems, 17, 999–1015 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. V. S. Gerdjikov, G. G. Grahovski, and N. A. Kostov, “Multicomponent NLS-type equations on symmetric spaces and their reductions,” Theor. Math. Phys., 144, 1147–1156 (2005).

    Article  MATH  Google Scholar 

  20. A. V. Mikhailov, “The reduction problem and the inverse scattering method,” Phys. D, 3, 73–117 (1981).

    Article  MATH  Google Scholar 

  21. V. S. Gerdjikov, R. I. Ivanov, and G. G. Grahovski, “On integrable wave Interactions and Lax pairs on symmetric spaces,” Wave Motion, 71, 53–70 (2017); arXiv:1607.06940v2 [nlin.SI] (2016).

    Article  MathSciNet  Google Scholar 

  22. G. G. Grahovski, V. S. Gerdjikov, N. A. Kostov, and V. A. Atanasov, “New integrable multi-component NLS type equations on symmetric spaces: Z 4- and Z 6-reductions,” in: Geometry, Integrability, and Quantization (Proc. 7th Intl. Conf., Sts. Constantine and Elena, Bulgaria, 2–10 June 2005, I. Mladenov and M. De Le´on, eds.), Softex, Sofia (2006), pp. 154–175; arXiv:nlin/0603066v1 (2006).

    Google Scholar 

  23. V. S. Gerdjikov, “Derivative nonlinear Schrödinger equations with ZN and DN-reductions,” Romanian J. Phys., 58, 573–582 (2013).

    MathSciNet  Google Scholar 

  24. V. S. Gerdjikov and A. A. Stefanov, “New types of two component NLS-type equations,” Pliska Stud. Math. Bulgar., 26, 53–66 (2016); arXiv:1703.01314v1 [nlin.SI] (2017).

    MathSciNet  MATH  Google Scholar 

  25. V. S. Gerdjikov, M. I. Ivanov, and P. P. Kulish, “Quadratic bundle and nonlinear equations,” Theor. Math. Phys., 44, 784–795 (1980).

    Article  MATH  Google Scholar 

  26. V. S. Gerdjikov and M. I. Ivanov, “A quadratic pencil of general type and nonlinear evolution equations: I. Expansions in ‘squares’ of solutions-generalized Fourier transforms [in Russian],” Bulgar. J. Phys., 10, 13–26 (1983).

    MathSciNet  Google Scholar 

  27. V. S. Gerdjikov and M. I. Ivanov, “A quadratic pencil of general type and nonlinear evolution equations: II. Hierarchies of Hamiltonian structures [in Russian],” Bulgar. J. Phys., 10, 130–143 (1983).

    MathSciNet  Google Scholar 

  28. V. S. Gerdjikov, “Riemann–Hilbert Problems with canonical normalization and families of commuting operators,” Pliska Stud. Math. Bulgar., 21, 201–216 (2012); arXiv:1204.2928v1 [nlin.SI] (2012).

    MathSciNet  Google Scholar 

  29. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Grad. Stud. Math., Vol. 34), Amer. Math. Soc., Providence, R. I. (2001).

    Book  MATH  Google Scholar 

  30. V. G. Drinfel’d and V. V. Sokolov, “Lie algebras and equations of Korteweg-de Vries type,” J. Soviet Math., 30, 1975–2036 (1985).

    Article  MATH  Google Scholar 

  31. D. J. Kaup, “Closure of the squared Zakharov–Shabat eigenstates,” J. Math. Anal. Appl., 54, 849–864 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Calogero and F. Degasperis, Spectral Transform and Solitons (Lect. Notes Computer Sci., Vol. 144), Vol. 1, Tools to Solve and Investigate Nonlinear Evolution Equations, North-Holland, Amsterdam (1982).

    MATH  Google Scholar 

  33. V. S. Gerdjikov, “Generalized Fourier transforms for the soliton equations: Gauge-covariant formulation,” Inverse Problems, 2, 51–74 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  34. V. E. Zakharov and E. I. Schulman, “To the integrability of the system of two coupled nonlinear Schrödinger equations,” Phys. D, 4, 270–274 (1982).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gerdjikov.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 192, No. 2, pp. 187–206, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerdjikov, V.S. Kulish–Sklyanin-type models: Integrability and reductions. Theor Math Phys 192, 1097–1114 (2017). https://doi.org/10.1134/S0040577917080013

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917080013

Keywords

Navigation