Skip to main content
Log in

Field theory and anisotropy of a cubic ferromagnet near the Curie point

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

It is known that critical fluctuations can change the effective anisotropy of a cubic ferromagnet near the Curie point. If the crystal undergoes a phase transition into the orthorhombic phase and the initial anisotropy is not too strong, then the effective anisotropy acquires the universal value A* = v*/u* at T c, where u* and v* are the coordinates of the cubic fixed point of the renormalization group equations in the scaling equation of state and expressions for nonlinear susceptibilities. Using the pseudo-ϵ-expansion method, we find the numerical value of the anisotropy parameter A at the critical point. Padé resummation of the six-loop pseudo-ϵ-expansions for u*, v*, and A* leads to the estimate A* = 0.13 ± 0.01, giving evidence that observation of anisotropic critical behavior of cubic ferromagnets in physical and computer experiments is entirely possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. G. Wilson and M. E. Fisher, “Critical exponents in 3.99 dimensions,” Phys. Rev. Lett., 28, 240–243 (1972).

    Article  ADS  Google Scholar 

  2. D. J. Wallace, “Critical behaviour of anisotropic cubic systems,” J. Phys. C, 6, 1390–1404 (1973).

    Article  ADS  Google Scholar 

  3. I. J. Ketley and D. J. Wallace, “A modified epsilon expansion for a Hamiltonian with cubic point-group symmetry,” J. Phys. A: Math. Gen., 6, 1667–1678 (1973).

    Article  ADS  Google Scholar 

  4. I. F. Lyuksyutov and V. L. Pokrovskii, “First-order phase transitions in systems with cubic anisotropy,” JETP Lett., 21, 9–11 (1975).

    ADS  Google Scholar 

  5. A. Aharony, “Critical behavior of anisotropic cubic systems,” Phys. Rev. B, 8, 4270–4273 (1973).

    Article  ADS  Google Scholar 

  6. A. I. Sokolov, Soviet Phys. Solid State, 19, 433–440 (1977).

  7. K. E. Newman and E. K. Riedel, “Cubic N-vector model and randomly dilute Ising model in general dimensions,” Phys. Rev. B, 25, 264–280 (1982); Erratum, 30, 2924.

    Article  ADS  Google Scholar 

  8. M. Ferer, J. P. Van Dyke, and W. J. Camp, “Effect of a cubic crystal field on the critical behavior of a 3D model with Heisenberg exchange coupling: A high-temperature series investigation,” Phys. Rev. B, 23, 2367–2373 (1981).

    Article  ADS  Google Scholar 

  9. M. Tissier, D. Mouhanna, J. Vidal, and B. Delamotte, “Randomly dilute Ising model: A nonperturbative approach,” Phys. Rev. B, 65, 140402 (2002); arXiv:cond-mat/0109176v3 (2001).

    Article  ADS  Google Scholar 

  10. I. O. Maier and A. I. Sokolov, “On the critical behavior of cubic crytals under structural phase transitions [in Russian],” Izv. AN SSSR Ser. Fiz., 51, 2103–2106 (1987)

    Google Scholar 

  11. I. O. Maier, A. I. Sokolov, “Is a cubic crystal ‘isotropic’ in the critical point?” Ferroelectrics Lett. Sect., 9, 95–98 (1988).

  12. N. A. Shpot, “Critical behavior of the mn-component field model in three dimensions II. Three-loop results,” Phys. Lett. A, 142, 474–478 (1989).

    Article  ADS  Google Scholar 

  13. I. O. Mayer, A. I. Sokolov, and B. N. Shalaev, “Critical exponents for cubic and impure uniaxial crystals: Most accurate (ϕ) theoretical values,” Ferroelectrics, 95, 93–96 (1989).

    Article  Google Scholar 

  14. D. V. Pakhnin and A. I. Sokolov, “Five-loop renormalization-group expansions for the three-dimensional nvector cubic model and critical exponents for impure Ising systems,” Phys. Rev. B, 61, 15130–15135 (2000); arXiv:cond-mat/9912071v3 (1999).

    Article  ADS  Google Scholar 

  15. J. M. Carmona, A. Pelissetto, and E. Vicari, “N-component Ginzburg–Landau Hamiltonian with cubic anisotropy: A six-loop study,” Phys. Rev. B, 61, 15136–15151 (2000); arXiv:cond-mat/9912115v2 (1999).

    Article  ADS  Google Scholar 

  16. H. Kleinert and V. Schulte-Frohlinde, “Exact five-loop renormalization group functions of ϕ4-theory with O(N)-symmetric and cubic interactions: Critical exponents up to e5,” Phys. Lett. B, 342, 284–296 (1995); arXiv:condmat/9503038v1 (1995).

    Article  ADS  Google Scholar 

  17. H. Kleinert and S. Thoms, “Large-order behavior of a two-coupling-constant ϕ4 theory with cubic anisotropy,” Phys. Rev. D, 52, 5926–5943 (1995); arXiv:hep-th/9508172v1 (1995).

    Article  ADS  Google Scholar 

  18. H. Kleinert, S. Thoms, and V. Schulte-Frohlinde, “Stability of a three-dimensional cubic fixed point in the two-coupling-constant ϕ4 theory,” Phys. Rev. B, 56, 14428–14434 (1997); arXiv:quant-ph/9611050v1 (1996).

    Article  ADS  Google Scholar 

  19. B. N. Shalaev, S. A. Antonenko, and A. I. Sokolov, “Five-loop \(\sqrt \varepsilon \)-expansion for random Ising model and marginal spin dimensionality for cubic systems,” Phys. Lett. A, 230, 105–110 (1997); arXiv:cond-mat/9803388v1 (1998).

    Article  ADS  Google Scholar 

  20. R. Folk, Yu. Holovatch, and T. Yavors’kii, “Effective and asymptotic critical exponents of a weakly diluted quenched Ising model: Three-dimensional approach versus \(\sqrt \varepsilon \) expansion,” Phys. Rev. B, 61, 15114–15129 (2000); arXiv:cond-mat/9909121v2 (1999).

    Article  ADS  Google Scholar 

  21. R. Folk, Yu. Holovatch, and T. Yavors’kii, “Pseudo-e expansion of six-loop renormalization-group functions of an anisotropic cubic model,” Phys. Rev. B, 62, 12195–12200 (2000); Erratum, 63, 189901; arXiv:cond-mat/0003216v2 (2000).

    Article  ADS  Google Scholar 

  22. K. B. Varnashev, “Stability of a cubic fixed point in three dimensions: Critical exponents for generic N,” Phys. Rev. B, 61, 14660–14674 (2000); arXiv:cond-mat/9909087v4 (1999).

    Article  ADS  Google Scholar 

  23. A. Pelissetto and E. Vicari, “Critical phenomena and renormalization-group theory,” Phys. Rep., 368, 549–727 (2002); arXiv:cond-mat/0012164v6 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. R. Guida and J. Zinn–Justin, “Critical exponents of the N-vector model,” J. Phys. A: Math. Gen., 31, 8103–8121 (1998); arXiv:cond-mat/9803240v3 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. D. V. Pakhnin and A. I. Sokolov, “Renormalization group and nonlinear susceptibilities of cubic ferromagnets at criticality,” Phys. Rev. B, 64, 094407 (2001); arXiv:cond-mat/0102368v3 (2001).

    Article  ADS  Google Scholar 

  26. J. C. Le Guillou and J. Zinn-Justin, “Critical exponents from field theory,” Phys. Rev. B, 21, 3976–3998 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Yu. Holovatch, D. Ivaneiko, and B. Delamotte, “On the criticality of frustrated spin systems with noncollinear order,” J. Phys. A: Math. Gen., 37, 3569–3575 (2004); arXiv:cond-mat/0312260v1 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. A. I. Sokolov and M. A. Nikitina, “Pseudo-e expansion and renormalized coupling constants at criticality,” Phys. Rev. E, 89, 052127 (2014); arXiv:1402.3531v2 [cond-mat.stat-mech] (2014).

    Article  ADS  Google Scholar 

  29. A. I. Sokolov and M. A. Nikitina, “Fisher exponent from pseudo-e expansion,” Phys. Rev. Es, 90, 012102 (2014); arXiv:1402.3894v2 [cond-mat.stat-mech] (2014).

    Article  ADS  Google Scholar 

  30. M. A. Nikitina and A. I. Sokolov, “Critical exponents and the pseudo-e-expansion,” Theor. Math. Phys., 186, 192–204 (2016); arXiv:1602.08681v1 [cond-mat.stat-mech] (2016).

    Article  MATH  Google Scholar 

  31. A. I. Sokolov and M. A. Nikitina, “Pseudo-expansion and critical exponents of superfluid helium,” Phys. A, 444, 177–181 (2016); arXiv:1402.4318v3 [cond-mat.stat-mech] (2014).

    Article  Google Scholar 

  32. P. Calabrese, E. V. Orlov, D. V. Pakhnin, and A. I. Sokolov, “Critical behavior of two-dimensional cubic and MN models in the five-loop renormalization group approximation,” Phys. Rev. B, 70, 094425 (2004); arXiv:cond-mat/0405432v1 (2004).

    Article  ADS  Google Scholar 

  33. P. Calabrese and P. Parruccini, “Harmonic crossover exponents in O(n) models with the pseudo-e expansion approach,” Phys. Rev. B, 71, 064416 (2005); arXiv:cond-mat/0411027v2 (2004).

    Article  ADS  Google Scholar 

  34. A. I. Sokolov, “Pseudo-epsilon expansion and the two-dimensional Ising model,” Phys. Sol. State, 47, 2144–2147 (2005); arXiv:cond-mat/0510088v2 (2005).

    Article  ADS  Google Scholar 

  35. A. I. Sokolov, “Phase transitions in two dimensions and multiloop renormalization group expansions,” Theor. Math. Phys., 176, 948–955 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  36. M. A. Nikitina and A. I. Sokolov, “Critical exponents in two dimensions and pseudo-e expansion,” Phys. Rev. E, 89, 042146 (2014); arXiv:1312.1062v3 [cond-mat.stat-mech] (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kudlis.

Additional information

The research of A. Kudlis was supported by a grant from the Russian Science Foundation (Project No. 16-11-10218).

The research of A. I. Sokolov was supported by the Russian Foundation for Basic Research (Grant No. 15-02-04687).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 2, pp. 344–353, February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudlis, A., Sokolov, A.I. Field theory and anisotropy of a cubic ferromagnet near the Curie point. Theor Math Phys 190, 295–302 (2017). https://doi.org/10.1134/S0040577917020106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917020106

Keywords

Navigation