Skip to main content
Log in

A particular thin-shell wormhole

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using a black hole with scalar hair, we construct a scalar thin-shell wormhole (TSW) in 2+1 dimensions by applying the Visser cut and paste technique. The surface stress, which is concentrated at the wormhole throat, is determined using the Darmois–Israel formalism. Using various gas models, we analyze the stability of the TSW. The stability region is changed by tuning the parameters l and u. We note that the obtained TSW originating from a black hole with scalar hair could be more stable with a particular value of the parameter l, but it still requires exotic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Morris and K. S. Thorne, “Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity,” Amer. J. Phys., 56, 395–412 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. M. S. Morris, K. S. Thorne, and U. Yurtsever, “Wormholes, time machines, and the weak energy condition,” Phys. Rev. Lett., 61, 1446–1449 (1988).

    Article  ADS  Google Scholar 

  3. D. Hochberg and M. Visser, “Null energy condition in dynamic wormholes,” Phys. Rev. Lett., 81, 746–749 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. D. Hochberg, C. Molina-Paris, and M. Visser, “Tolman wormholes violate the strong energy condition,” Phys. Rev. Lett. D, 59, 044011 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. L. Friedman, K. Schleich, and D. M. Witt, “Topological censorship,” Phys. Rev. Lett., 71, 1486–1489 (1993); Erratum, 75, 1872 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. T. Harko, F. S. N. Lobo, M. K. Mak, and S. V. Sushkov, “Modified-gravity wormholes without exotic matter,” Phys. Rev. D, 87, 067504 (2013).

    Article  ADS  Google Scholar 

  7. S. H. Mazharimousavi and M. Halilsoy, “3+1-dimensional thin shell wormhole with deformed throat can be supported by normal matter,” Eur. Phys. J. C, 75, 271 (2015).

    Article  ADS  Google Scholar 

  8. M. Visser, “Traversable wormholes from surgically modified Schwarzschild spacetimes,” Nucl. Phys. B, 328, 203–212 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  9. W. Israel, “Singular hypersurfaces and thin shells in general relativity,” Il Nuovo Cimento B, 44, 1–14 (1966).

    Article  ADS  Google Scholar 

  10. E. Poisson and M. Visser, “Thin-shell wormholes: Linearization stability,” Phys. Rev. D, 52, 7318–7321 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. H. Mazharimousavi and M. Halilsoy, “Counter-rotational effects on stability of (2+1)-dimensional thin-shell wormholes,” Eur. Phys. J. C, 74, 3073 (2014).

    Article  ADS  Google Scholar 

  12. G. A. S. Dias and J. P. S. Lemos, “Thin-shell wormholes in d-dimensional general relativity: Solutions, properties, and stability,” Phys. Rev. D, 82, 084023 (2010).

    Article  ADS  Google Scholar 

  13. M. La Camera, “On thin-shell wormholes evolving in flat FRW spacetimes,” Modern Phys. Lett. A, 26, 857–863 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. Banerjee, “Stability of charged thin-shell wormholes in (2+1)-dimensions,” Internat. J. Theoret. Phys., 52, 2943–2958 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Banerjee, F. Rahaman, S. Chattopadhyay, and S. Banerjee, “Stability of non-asymptotically flat thin-shell wormholes in generalized dilaton–axion gravity,” Internat. J. Theoret. Phys., 52, 3188–3198 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. Banerjee, F. Rahaman, K. Jotania, R. Sharma, and M. Rahaman, “Exact solutions in (2+1)-dimensional antide Sitter space–time admitting a linear or non-linear equation of state,” Astrophys. Space Sci., 355, 353–359 (2015).

    Article  ADS  Google Scholar 

  17. P. Bhar and A. Banerjee, “Stability of thin-shell wormholes from noncommutative BTZ black hole,” Internat. J. Modern Phys. D, 24, 1550034 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. N. M. Garcia, F. S. N. Lobo, and M. Visser, “Generic spherically symmetric dynamic thin-shell traversable wormholes in standard general relativity,” Phys. Rev. D, 86, 044026 (2012).

    Article  ADS  Google Scholar 

  19. P. K. F. Kuhfittig, “On the stability of thin-shell wormholes in noncommutative geometry,” Adv. High Energy Phys., 2012, 462493 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Halilsoy, A. Ovgun, and S. H. Mazharimousavi, “Thin-shell wormholes from the regular Hayward black hole,” Eur. Phys. J. C, 74, 2796 (2014).

    Article  ADS  Google Scholar 

  21. F. Darabi, “Classical Euclidean wormhole solutions in the Palatini f(\(\tilde R\) ) cosmology,” Theor. Math. Phys., 173, 1734–1742 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  22. P. E. Kashargin and S. V. Sushkov, “Rotating thin-shell wormhole from glued Kerr spacetimes,” Gravit. Cosmol., 17, 119–125 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. Sharif and M. Azam, “Mechanical stability of cylindrical thin-shell wormholes,” Eur. Phys. J. C, 73, 2407 (2013).

    Article  ADS  Google Scholar 

  24. M. Sharif and M. Azam, “Stability analysis of thin-shell wormholes from charged black string,” J. Cosmol. Astropart. Phys., 04, 023 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Sharif and M. Azam, “Spherical thin-shell wormholes and modified Chaplygin gas,” J. Cosmol. Astropart. Phys., 05, 025 (2013).

    Article  ADS  Google Scholar 

  26. C. Bejarano, E. F. Eiroa, and C. Simeone, “General formalism for the stability of thin-shell wormholes in 2+1 dimensions,” Eur. Phys. J. C, 74, 3015 (2014).

    Article  ADS  Google Scholar 

  27. M. Sharif and S. Mumtaz, “Effects of charge on the stability of thin-shell wormholes,” Astrophys. Space Sci., 352, 729–736 (2014).

    Article  ADS  Google Scholar 

  28. M. Sharif and M. Azam, “Thin-shell wormholes in Born–Infeld electrodynamics with modified Chaplygin gas,” Phys. Lett. A, 378, 2737–2742 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. A. Eid, “Linearized stability of Reissner Nordstrom de-Sitter thin shell wormholes,” New Astronomy, 39, 72–75 (2015).

    Article  ADS  Google Scholar 

  30. F. Rahaman and A. Banerjee, “Thin-shell wormholes from black holes with dilaton and monopole fields,” Internat. J. Theoret. Phys., 51, 901–911 (2012).

    Article  ADS  MATH  Google Scholar 

  31. F. Rahaman, A. Banerjee, and I. Radinschi, “A new class of stable (2+1) dimensional thin shell wormhole,” Internat. J. Theoret. Phys., 51, 1680–1691 (2012).

    Article  ADS  MATH  Google Scholar 

  32. F. Rahaman, P. K. F. Kuhfittig, M. Kalam, A. A. Usmani, and S. Ray, “A comparison of Horava–Lifshitz gravity and Einstein gravity through thin-shell wormhole construction,” Class. Q. Grav., 28, 155021 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. F. Rahaman, K. A. Rahman, Sk. A. Rakib, and P. K. F. Kuhfittig, “Thin-shell wormholes from regular charged black holes,” Internat. J. Theoret. Phys., 49, 2364–2378 (2010).

    Article  ADS  MATH  Google Scholar 

  34. S. H. Mazharimousavi and M. Halilsoy, “Einstein–Maxwell gravity coupled to a scalar field in 2+1 dimensions,” Eur. Phys. J. Plus, 130, 158 (2015).

    Article  MATH  Google Scholar 

  35. S. H. Mazharimousavi, M. Halilsoy, I. Sakalli, and O. Gurtug, “Dilatonic interpolation between Reissner–Nordström and Bertotti–Robinson spacetimes with physical consequences,” Class. Q. Grav., 27, 105005 (2010).

    Article  ADS  MATH  Google Scholar 

  36. G. Clément, J. C. Fabris, and G. T. Marques, “Hawking radiation of linear dilaton black holes,” Phys. Lett. B, 651, 54–57 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. H. Pasaoglu and I. Sakalli, “Hawking radiation of linear dilaton black holes in various theories,” Internat. J. Theoret. Phys., 48, 3517–3525 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. I. Sakalli, M. Halilsoy, and H. Pasaoglu, “Fading Hawking radiation,” Astrophys. Space Sci., 340, 155–160 (2012).

    Article  ADS  MATH  Google Scholar 

  39. I. Sakalli and A. Ovgun, Europhys. Lett., 110, 10008 (2015).

    Article  ADS  Google Scholar 

  40. I. Sakalli and A. Ovgun, “Gravitinos tunneling from traversable Lorentzian wormholes,” Astrophys. Space Sci., 359, 32 (2015).

    Article  ADS  Google Scholar 

  41. I. Sakalli, M. Halilsoy, and H. Pasaoglu, “Entropy conservation of linear dilaton black holes in quantum corrected Hawking radiation,” Internat. J. Theoret. Phys., 50, 3212–3224 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. I. Sakalli, “Dilatonic entropic force,” Internat. J. Theoret. Phys., 50, 2426–2437 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. K. Lanczos, “Flächenhafte verteilung der materie in der Einsteinschen gravitationstheorie,” Ann. Phys. (Leipzig), 379, 518–540 (1924).

    Article  ADS  MATH  Google Scholar 

  44. G. Darmois, Mémorial des Sciences Mathématiques Fascicule XXV, Gauthier-Villars, Paris (1927).

    Google Scholar 

  45. P. Musgrave and K. Lake, “Junctions and thin shells in general relativity using computer algebra: I. The Darmois–Israel formalism,” Class. Q. Gravity, 13, 1885–1899 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. K. K. Nandi, Y.-Z. Zhang, and K. B. V. Kumar, “Volume integral theorem for exotic matter,” Phys. Rev. D, 70, 127503 (2004).

    Article  ADS  Google Scholar 

  47. V. Varela, “Note on linearized stability of Schwarzschild thin-shell wormholes with variable equations of state,” Phys. Rev. D, 92, 044002 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  48. K. A. Bronnikov, L. N. Lipatova, I. D. Novikov, and A. A. Shatskiy, “Example of a stable wormhole in general relativity,” Gravit. Cosmol., 19, 269–274 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. I. D. Novikov and A. A. Shatskiy, “Stability analysis of a Morris–Thorne–Bronnikov–Ellis wormhole with pressure,” JETP, 114, 801–804 (2012).

    Article  ADS  Google Scholar 

  50. P. K. F. Kuhfittig, “Wormholes with a barotropic equation of state admitting a one-parameter group of conformal motions,” Ann. Phys., 355, 115–120 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. E. F. Eiroa and C. Simeone, “Stability of Chaplygin gas thin-shell wormholes,” Phys. Rev. D, 76, 024021 (2007).

    Article  ADS  Google Scholar 

  52. F. S. N. Lobo, “Chaplygin traversable wormholes,” Phys. Rev. D, 73, 064028 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  53. V. Gorini, U. Moschella, A. Y. Kamenshchik, V. Pasquier, and A. A. Starobinsky, “Tolman–Oppenheimer–Volkoff equations in the presence of the Chaplygin gas: Stars and wormholelike solutions,” Phys. Rev. D, 78, 064064 (2008).

    Article  ADS  Google Scholar 

  54. A. Einstein and N. Rosen, “The particle problem in the general theory of relativity,” Phys. Rev., 48, 73–77 (1935).

    Article  ADS  MATH  Google Scholar 

  55. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev., 47, 777–780 (1935).

    Article  ADS  MATH  Google Scholar 

  56. J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortschr. Phys., 61, 781–811 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  57. F. S. N. Lobo, G. J. Olmo, and D. Rubiera-Garcia, “Microscopic wormholes and the geometry of entanglement,” Eur. Phys. J. C, 74, 2924 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Övgün.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 1, pp. 138–149, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Övgün, A., Sakalli, I. A particular thin-shell wormhole. Theor Math Phys 190, 120–129 (2017). https://doi.org/10.1134/S004057791701010X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057791701010X

Keywords

Navigation