Skip to main content
Log in

Matter-coupled de Sitter supergravity

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The de Sitter supergravity describes the interaction of supergravity with general chiral and vector multiplets and also one nilpotent chiral multiplet. The extra universal positive term in the potential, generated by the nilpotent multiplet and corresponding to the anti-D3 brane in string theory, is responsible for the de Sitter vacuum stability in these supergravity models. In the flat-space limit, these supergravity models include the Volkov–Akulov model with a nonlinearly realized supersymmetry. We generalize the rules for constructing the pure de Sitter supergravity action to the case of models containing other matter multiplets. We describe a method for deriving the closed-form general supergravity action with a given potential K, superpotential W, and vectormatrix fAB interacting with a nilpotent chiral multiplet. It has the potential V = eK(|F2|+|DW|2-3|W|2), where F is the auxiliary field of the nilpotent multiplet and is necessarily nonzero. The de Sitter vacuums are present under the simple condition that |F2|-3|W|2 > 0. We present an explicit form of the complete action in the unitary gauge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. ’t Hooft, Nucl. Phys. B, 35, 167–188 (1971).

    Article  ADS  Google Scholar 

  2. R. E. Kallosh and I. V. Tyutin, Sov. J. Nucl. Phys., 17, 98–106 (1973).

    MathSciNet  Google Scholar 

  3. G. ’t Hooft and M. Veltman, Nucl. Phys. B, 50, 318–353 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  4. I. V. Tyutin, “Gauge invariance in field theory and statistical physics in the operator formalism [in Russian],” Preprint FIAN No. 39, Lebedev Phys. Inst., Moscow (1975); arXiv:0812.0580v2 [hep-th] (2008).

    Google Scholar 

  5. C. Becchi, A. Rouet, and R. Stora, Ann. Phys., 98, 287–321 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  6. E. A. Bergshoeff, D. Z. Freedman, R. Kallosh, and A. Van Proeyen, Phys. Rev. D, 92, 085040 (2015); arXiv:1507.08264v5 [hep-th] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  7. F. Hasegawa and Y. Yamada, “Component action of nilpotent multiplet coupled to matter in 4 dimensional N=1 supergravity,” arXiv:1507.08619v3 [hep-th] (2015).

    Google Scholar 

  8. D. V. Volkov and V. P. Akulov, Phys. Lett. B, 46, 109–110 (1973).

    Article  ADS  Google Scholar 

  9. I. Antoniadis, E. Dudas, S. Ferrara, and A. Sagnotti, Phys. Lett. B, 733, 32–35 (2014); arXiv:1403.3269v2 [hep-th] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Dudas, S. Ferrara, A. Kehagias, and A. Sagnotti, “Properties of nilpotent supergravity,” arXiv:1507.07842v2 [hep-th] (2015)

    Google Scholar 

  11. S. Ferrara, M. Porrati, and A. Sagnotti, Phys. Lett. B, 749, 589–591 (2015); arXiv:1508.02939v2 [hep-th] (2015)

    Article  ADS  Google Scholar 

  12. I. Antoniadis and C. Markou, Eur. Phys. J. C, 75, 582 (2015); arXiv:1508.06767v2 [hep-th] (2015).

    Article  ADS  Google Scholar 

  13. S. Ferrara, R. Kallosh, and A. Linde, JHEP, 1410, 143 (2014); arXiv:1408.4096v2 [hep-th] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Kallosh, L. Kofman, A. D. Linde, and A. Van Proeyen, Class. Q. Grav., 17, 4269–4338 (2000); Erratum, 21, 5017–5018 (2004); arXiv:hep-th/0006179v3 (2000).

    Article  ADS  Google Scholar 

  15. D. Z. Freedman and A. Van Proeyen, Supergravity, Cambridge Univ. Press, Cambridge (2012).

    Book  MATH  Google Scholar 

  16. S. M. Kuzenko, “Complex linear Goldstino superfield and de Sitter supergravity,” arXiv:1508.03190v4 [hep-th] (2015).

    Google Scholar 

  17. S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, Phys. Rev. D, 68, 046005 (2003); arXiv:hep-th/0301240v2 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Kachru, R. Kallosh, A. D. Linde, J. M. Maldacena, L. P. McAllister, and S. P. Trivedi, JCAP, 0310, 013 (2003); arXiv:hep-th/0308055v2 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  19. E. A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen, and T. Wrase, JHEP, 1505, 058 (2015); arXiv: 1502.07627v2 [hep-th] (2015)

    Article  ADS  Google Scholar 

  20. R. Kallosh and T. Wrase, JHEP, 1412, 117 (2014); arXiv:1411.1121v2 [hep-th] (2014).

    Article  ADS  Google Scholar 

  21. R. Kallosh, F. Quevedo, and A. M. Uranga, JHEP, 1512, 039 (2015); arXiv:1507.07556v2 [hep-th] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Kallosh and A. Linde, JCAP, 1501, 025 (2015); arXiv:1408.5950v3 [hep-th] (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Kallosh, A. Linde, and M. Scalisi, JHEP, 1503, 111 (2015); arXiv:1411.5671v2 [hep-th] (2014)

    Article  MathSciNet  Google Scholar 

  24. A. Linde, JCAP, 1502, 030 (2015); arXiv:1412.7111v3 [hep-th] (2014); 1505, 003 (2015); arXiv:1504.00663v1 [hep-th] (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. A. B. Lahanas and K. Tamvakis, Phys. Rev. D, 91, 085001 (2015); arXiv:1501.06547v3 [hep-th] (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. R. Kallosh and A. Linde, Phys. Rev. D, 91, 083528 (2015); arXiv:1502.07733v3 [astro-ph.CO] (2015)

    Article  ADS  Google Scholar 

  27. J. J. M. Carrasco, R. Kallosh, A. Linde, and D. Roest, Phys. Rev. D, 92, 041301 (2015); arXiv:1504.05557v1 [hep-th] (2015)

    Article  ADS  Google Scholar 

  28. M. Scalisi, JHEP, 1512, 134 (2015); arXiv:1506.01368v3 [hep-th] (2015)

    Article  ADS  Google Scholar 

  29. J. J. M. Carrasco, R. Kallosh, and A. Linde, “α-Attractors: Planck, LHC, and dark energy,” arXiv:1506.01708v2 [hep-th] (2015).

    Google Scholar 

  30. G. Dall’Agata and F. Zwirner, JHEP, 1412, 172 (2014); arXiv:1411.2605v3 [hep-th] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Roček, Phys. Rev. Lett., 41, 451–453 (1978)

    Article  ADS  Google Scholar 

  32. E. A. Ivanov and A. A. Kapustnikov, J. Phys. A: Math. Gen., 11, 2375–2384 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  33. U. Lindström and M. Roček, Phys. Rev. D, 19, 2300–2303 (1979).

    Article  ADS  Google Scholar 

  34. Z. Komargodski and N. Seiberg, JHEP, 0909, 066 (2009); arXiv:0907.2441v3 [hep-th] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  35. S. M. Kuzenko and S. J. Tyler, Phys. Lett. B, 698, 319–322 (2011); arXiv:1009.3298v2 [hep-th] (2010).

    Article  ADS  Google Scholar 

  36. P. K. Townsend, Phys. Rev. D, 15, 2802–2804 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Saltman and E. Silverstein, JHEP, 0601, 139 (2006); arXiv:hep-th/0411271v2 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  38. R. Kallosh, A. Linde, B. Vercnocke, and T. Wrase, JHEP, 1410, 011 (2014); arXiv:1406.4866v1 [hep-th] (2014)

    Article  ADS  MathSciNet  Google Scholar 

  39. M. C. D. Marsh, B. Vercnocke, and T. Wrase, JHEP, 1505, 081 (2015); arXiv:1411.6625v1 [hep-th] (2014).

    Article  MathSciNet  Google Scholar 

  40. R. Kallosh and T. Wrase, Phys. Rev. D, 92, 105010 (2015); arXiv:1509.02137v1 [hep-th] (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Kallosh.

Additional information

Dedicated to I. V. Tyutin’s birthday

This research is supported by the Stanford Institute of Theoretical Physics, the National Science Foundation (Grant No. PHY-1316699), and the Templeton Foundation (Grant “Quantum Gravity Frontiers”).

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 187, No. 2, pp. 283–296, May, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallosh, R.E. Matter-coupled de Sitter supergravity. Theor Math Phys 187, 695–705 (2016). https://doi.org/10.1134/S0040577916050068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916050068

Keywords

Navigation