Skip to main content
Log in

Conversion of second-class constraints and resolving the zero-curvature conditions in the geometric quantization theory

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the approach to geometric quantization based on the conversion of second-class constraints, we resolve the corresponding nonlinear zero-curvature conditions for the extended symplectic potential. From the zero-curvature conditions, we deduce new linear equations for the extended symplectic potential. We show that solutions of the new linear equations also satisfy the zero-curvature condition. We present a functional solution of these new linear equations and obtain the corresponding path integral representation. We investigate the general case of a phase superspace where boson and fermion coordinates are present on an equal basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Berezin, Commun. Math. Phys., 40, 153–174 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  2. D. J. Simms and N. M. J. Woodhouse, Lectures on Geometric Quantization (Lect. Notes Phys., Vol. 53), Springer, Berlin (1976).

    MATH  Google Scholar 

  3. N. M. J. Woodhouse, Rep. Math. Phys., 12, 45–56 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Forger and H. Hess, Commun. Math. Phys., 64, 269–278 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  5. N. M. J. Woodhouse, Geometric Quantization, Oxford Univ. Press, New York (1992).

    MATH  Google Scholar 

  6. E. S. Fradkin and G. A. Vilkovisky, Phys. Lett. B, 55, 224–226 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  7. I. A. Batalin and G. A. Vilkovisky, Phys. Lett. B, 69, 309–312 (1977).

    Article  ADS  Google Scholar 

  8. B. V. Fedosov, Deformation Quantization and Index Theory (Math. Topics, Vol. 9), Akademie, Berlin (1996).

    MATH  Google Scholar 

  9. M. Alexandrov, M. Kontsevich, A. Schwarz, and O. Zaboronsky, Internat. J. Mod. Phys. A, 12, 1405–1429 (1997); arXiv:hep-th/9502010v2 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. S. Cattaneo and G. Felder, Commun. Math. Phys., 212, 591–611 (2000); arXiv:math/9902090v3 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  11. I. A. Batalin and E. S. Fradkin, Phys. Lett. B, 180, 157–164 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  12. I. A. Batalin and E. S. Fradkin, Nucl. Phys. B, 279, 514–528 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  13. I. A. Batalin, E. S. Fradkin, and T. E. Fradkina, Nucl. Phys. B, 314, 158–174 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  14. I. A. Batalin and E. S. Fradkin, Nucl. Phys. B, 326, 701–718 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  15. I. A. Batalin, E. S. Fradkin, and T. E. Fradkina, Nucl. Phys. B, 332, 723–736 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  16. E. S. Fradkin and V. Ya. Linetsky, Nucl. Phys. B, 444, 577–601 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  17. E. S. Fradkin and V. Ya. Linetsky, Nucl. Phys. B, 431, 569–621 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  18. M. A. Grigoriev and S. L. Lyakhovich, Commun. Math. Phys., 218, 437–457 (2001); arXiv:hep-th/0003114v2 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  19. I. A. Batalin, M. A. Grigoriev, and S. L. Lyakhovich, Theor. Math. Phys., 128, 1109–1139 (2001).

    Article  Google Scholar 

  20. I. Batalin, M. Grigoriev, and S. Lyakhovich, J. Math. Phys., 46, 072301 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  21. I. A. Batalin and E. S. Fradkin, Modern Phys. Lett. A, 4, 1001–1011 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  22. I. A. Batalin and I. V. Tyutin, Internat. J. Mod. Phys. A, 6, 3255–3282 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. V. Karasev and V. P. Maslov, Nonlinear Poisson Brackets: Geometry and Quantization [in Russian], Nauka, Moscow (1991); English transl. (Transl. Math. Monogr., Vol. 119), Amer. Math. Soc., Providence, R. I. (1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Batalin.

Additional information

The research of I. A. Batalin is supported in part by the Russian Foundation for Basic Research (Grant Nos. 14- 01-00489 and 14-02-01171).

The research of P. M. Lavrov is supported by the Ministry of Education and Science of the Russian Federation (Project No. Z.867.2014/K).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 187, No. 2, pp. 200–212, May, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batalin, I.A., Lavrov, P.M. Conversion of second-class constraints and resolving the zero-curvature conditions in the geometric quantization theory. Theor Math Phys 187, 621–632 (2016). https://doi.org/10.1134/S0040577916050020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916050020

Keywords

Navigation