Skip to main content
Log in

Radar Images of Permanently Shadowed Regions at the South Pole of the Moon

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The paper presents new detailed radar maps and polarimetric data covering the southern polar region of the near side of the Moon measuring 400 × 800 km with a spatial resolution of about 75 m. The data were obtained using the 64-meter antenna (TNA-1500) of the Satellite Communications Center Bear Lakes of the Special Design Bureau of the Moscow Power Engineering Institute and the 13.2-meter radio telescope (RT-13) of the Svetloe Observatory of the Institute of Applied Astronomy, Russian Academy of Sciences, at a wavelength of 4.2 cm. At this wavelength, radar signals penetrate the lunar regolith to depths of up to 1 m and are sensitive to surface and suspended rocks larger than 1 cm. The maps show 39% of the area of permanently shadowed regions not observable by optical Earth-based instruments, which may hide water ice deposits. Analysis of radar maps did not reveal any relationship between the polarization properties of the surface in these regions and the presence of solar illumination. The data obtained as a result of this work can be used to study the surface and subsurface regolith features of the lunar south polar region, including searching for ice deposits in permanently shadowed regions, as well as for planning future lunar missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bondarenko, Yu.S., Marshalov, D.A., and Makarchuk, S., Radar images of the Moon at 4.2-cm wavelength, LPI Contrib., 2022, no. 2678, id. 2131.

  2. Campbell, B.A., Hawke, B.R., and Thompson, T.W., Regolith composition and structure in the lunar maria: Results of long-wavelength radar studies, J. Geophys. Res., 1997, vol. 102, no. E8, pp. 19307–19320.

    Article  ADS  CAS  Google Scholar 

  3. Campbell, D.B., Campbell, B.A., Carter, L.M., Margot, J.-L., and Stacy, N.J.S., No evidence for thick deposits of ice at the lunar south pole, Nature, 2006, vol. 443, no. 7113, pp. 835–837.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Campbell, B.A., Campbell, D.B., Margot, J.L., Ghent, R.R., Nolan, M., Chandler, J., Carter, L.M., and Stacy, N.J.S., Focused 70-cm wavelength radar mapping of the Moon, IEEE Trans., 2007, vol. 45, no. 12, pp. 4032–4042.

    Google Scholar 

  5. Campbell, B.A., High circular polarization ratios in radar scattering from geologic targets, J. Geophys. Res., 2012, vol. 117, p. E06008.

    Article  ADS  Google Scholar 

  6. Carrier, W.D., Olhoeft, G.R., and Mendell, W., Physical Properties of the Lunar Surface. Lunar Sourcebook. A User’s Guide to the Moon, Cambridge: Cambridge Univ. Press, 1991, pp. 475–594.

    Google Scholar 

  7. Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R.C., Goldstein, D., Summy, D., Bart, G.D., Asphaug, E., Korycansky, D., Landis, D., and Sollitt, L., Detection of water in the LCROSS ejecta plume, Science, 2010, vol. 330, no. 6003, pp. 463–468.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Evstigneev, A.A., Chernov, V.K., Evstigneeva, O.Eu., Ipatova, I.A., Khvostov, Eu.Yu., Lavrov, A.P., Pozdnyakov, I.A., Vekshin, Yu.V., and Zotov, M.B., RT-13 VLBI receivers, Trans. IAA RAS, 2020, vol. 55, pp. 36–40.

    Google Scholar 

  9. Hapke, B., Coherent backscatter and the radar characteristics of outer planet satellites, Icarus, 1990, vol. 88, no. 2, pp. 407–417.

    Article  ADS  Google Scholar 

  10. Harmon, J.K., Slade, M.A., Velez, R.A., Crespo, A., Dryer, M.J., and Johnson, J.M., Radar mapping of Mercury’s polar anomalies, Nature, 1994, vol. 369, no. 6477, pp. 213–215.

    Article  ADS  Google Scholar 

  11. Margot, J.L., Campbell, D.B., Jurgens, R.F., and Slade, M.A., Topography of the lunar poles from radar interferometry: a survey of cold trap locations, Science, 1999, vol. 284, no. 5420, pp. 1658–1660.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Marshalov, D.A., Bondarenko, Yu.S., Medvedev, Yu.D., Vavilov, D.E., Zotov, M.B., and Mikhailov, A.G., A set of tools for conducting radar observations of near-Earth objects, Pribory Tekh. Eksp., 2018, vol. 4, pp. 111–116.

    Google Scholar 

  13. Mazarico, E., Neumann, G.A., Smith, D.E., Zuber, M.T., and Torrence, M.H., Illumination conditions of the lunar polar regions using LOLA topography, Icarus, 2011, vol. 211, no. 2, pp. 1066–1081.

    Article  ADS  Google Scholar 

  14. Mitrofanov, I.G., Zelenyi, L.M., Tret’yakov, V.I., and Kalashnikov, D.V., Luna-25: The first polar mission to the Moon, Sol. Syst. Res., 2021, vol. 55, no. 6, pp. 485–495.

    Article  ADS  Google Scholar 

  15. Neish, C.D., Bussey, D.B.J., Spudis, P., Marshall, W., Thomson, B.J., Patterson, G.W., and Carter, L.M., The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site, J. Geophys. Res., 2011, vol. 116, no. E1, p. E01005.

    Article  ADS  Google Scholar 

  16. Nosov, E., Marshalov, D., Fedotov, L., and Sheynman, Y., Multifunctional digital backend for quasar VLBI network, J. Instrum., 2021, vol. 16, p. P05003.

    Article  Google Scholar 

  17. Nozette, S., Lichtenberg, C.L., Spudis, P., Bonner, R., Ort, W., Malaret, E., Robinson, M., and Shoemaker, E.M., The clementine bistatic radar experiment, Science, 1996, vol. 274, no. 5292, pp. 1495–1498.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Patterson, G.W., Stickle, A.M., Turner, F.S., Jensen, J.R., Bussey, D.B.J., Spudis, P., Espiritu, R.C., Schulze, R.C., Yocky, D.A., Wahl, D.E., and 12 co-authors, Bistatic radar observations of the Moon using Mini-RF on LRO and the Arecibo observatory, Icarus, 2017, vol. 283, pp. 2–19.

    Article  ADS  Google Scholar 

  19. Pavlov, S.R., Bondarenko, Yu.S., and Marshalov, D.A., Methodology for radar mapping of the Moon, Tr. Inst. Prikl. Astron. Ross. Akad. Nauk, 2023, vol. 67, pp. 3–7.

    Google Scholar 

  20. Schultz, P.H., Hermalyn, B., Colaprete, A., Ennico, K., Shirley, M., and Marshall, W.S., The LCROSS cratering experiment, Science, 2010, vol. 330, no. 6003, pp. 468–472.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Shuygina, N., Ivanov, D., Ipatov, A., Gayazov, I., Marshalov, D., Melnikov, A., Kurdubov, S., Vasilyev, M., Ilin, G., Skurikhina, E., and 8 co-authors, Russian VLBI network “Quasar”: Current status and outlook, Geod. Geodyn., 2019, vol. 10, no. 2, pp. 150–156.

    Article  Google Scholar 

  22. Simpson, R.A. and Tyler, G.L., Reanalysis of Clementine bistatic radar data from the lunar south pole, J. Geophys. Res., 1999, vol. 104, no. E2, pp. 3845–3862.

    Article  ADS  Google Scholar 

  23. Slade, M.A., Butler, B.J., and Muhleman, D.O., Mercury radar imaging: Evidence for polar ice, Science, 1992, vol. 258, no. 5082, pp. 635–640.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Stacy, N.J.S., Campbell, D.B., and Ford, P.G., Arecibo radar mapping of the lunar poles: A search for ice deposits, Science, 1997, vol. 276, no. 5318, pp. 1527–1530.

    Article  ADS  CAS  Google Scholar 

  25. Thomson, B.J., Bussey, D.B.J., Neish, C.D., Cahill, J.T.S., Heggy, E., Kirk, R.L., Patterson, G.W., Raney, R.K., Spudis, P.D., Thompson, T.W., and Ustinov, E.A., An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar, Geophys. Res. Lett., 2012, vol. 39, p. L14201.

    Article  ADS  Google Scholar 

  26. Zhukov, A.O., Ivanov, K.A., Bondareva, M.K., and Gorovoi, D.S., Ground control complex for deep space spacecraft, Sib. Aerokosm. Zh., 2023, vol. 24, no. 1, pp. 99–108.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the technical staff of the SCC Bear Lakes of the SDB MPEI and the Svetloe Observatory of the IAA RAS, for their assistance in organizing and conducting radar observations of the Moon.

Funding

The research was supported by a grant from the Russian Science Foundation (project no. 23-22-00254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Bondarenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, Y.S., Marshalov, D.A., Zinkovsky, B.M. et al. Radar Images of Permanently Shadowed Regions at the South Pole of the Moon. Sol Syst Res (2024). https://doi.org/10.1134/S0038094624700217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0038094624700217

Keywords:

Navigation