Skip to main content
Log in

Analysis of Spacecraft Flight Trajectories to Venus with a Flyby of Asteroids

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

We have studied energy-low-cost ballistic trajectories of a spacecraft flight to Venus with asteroid flyby. It is shown that when using schemes including a gravitational maneuver required to deliver the lander to a given area on the surface of Venus, the passing of at least one asteroid is possible. A total of 39 asteroids were discovered, whose passage can occur when launching in 2029–2050. An analysis of the attainable landing areas during the flight of a spacecraft to Venus along trajectories of this type has been performed. It is shown that in each launch window in the period from 2029 to 2050, it is possible to find an asteroid whose passage is possible during the time period between two approaches of the spacecraft to Venus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Baskaran, G., Bonthalapati, A.S., Lewis, J.D., Malone, K.J., Ved, H.M., and Lyne, J.E., A survey of mission opportunities to trans-Neptunian objects—Part IV, in AIAA/AAS Astrodynamics Specialist Conf., Broschart, S.B., Turner, J.D., Howell, K.C., and Hoots, F.R., Eds., Virginia: Am. Inst. Aeronautics and Astronautics, 2014, vol. 64.

  2. Belton, M.J.S., Chapman, C.R., Klaasen, K.P., Harch, A.P., Thomas, P.C., Veverka, J., McEwen, A.S., and Pappalardo, R.T., Galileo’s encounter with 243 Ida: An overview of the imaging experiment, Icarus, 1996, vol. 120, no. 1, pp. 1–19.

    Article  ADS  Google Scholar 

  3. Bolin, B.T., Noll, K.S., Caiazzo, I., Fremling, C., and Binzel, R.P., Keck and Gemini spectral characterization of Lucy mission fly-by target (152830) Dinkinesh, Icarus, 2023, vol. 400, p. 115562.

    Article  Google Scholar 

  4. Borovin, G.K., Golubev, Yu.F., Grushevskii, A.V., Koryanov, V.V., and Tuchin, A.G., Flights in the Jupiter system using gravity assist maneuvers around the Galilean moons, Preprints of the Keldysh Inst. of Appl. Math., Russ. Acad. Sci., 2013, no. 1, pp. 32–72.

  5. Borovin, G.K., Golubev, Yu.F., Grushevskii, A.V., Zaslavskii, G.S., Zakhvatkin, M.V., Koryanov, V.V., Lavrenov, S.M., Morskoi, I.M., Simonov, A.V., Stepan’yants V.A., Tuchin, A.G., Tuchin, D.A., and Yaroshevskii, V.S., Ballistiko-navigatsionnoe obespechenie poletov avtomaticheskikh kosmicheskikh apparatov k telam Solnechnoi sistemy (Ballistic and Navigation Support for Flights of Unmanned Spacecraft to the Bodies of the Solar System), Khimki: Izd. NPO im. S.A. Lavochkina, 2018.

  6. Carry, B., Solano, E., Eggl, S., and DeMeo, F.E., Spectral properties of near-Earth and Mars-crossing asteroids using Sloan photometry, Icarus, 2016, vol. 268, pp. 340–354.

    Article  ADS  Google Scholar 

  7. DellaGiustina, D., Golish, D.R., Guzewich, S., Moreau, M., Nolan, M.C., Polit, A.T., and Simon, A.A., Osiris-APEX: A proposed OSIRIS-REx extended mission to Apophis, LPI Contrib., 2022, vol. 2681, p. 2011.

    ADS  Google Scholar 

  8. de León, J., Licandro, J., Pinilla-Alonso, N., Moskovitz, N., Kareta, T., and Popescu, M., Characterisation of the new target of the NASA Lucy mission: Asteroid 152830 Dinkinesh (1999 VD57), Astron. Astrophys., 2023, vol. 672, p. A174.

    Article  ADS  Google Scholar 

  9. Eismont, N.A., Zasova, L.V., Simonov, A.V., Kovalenko, I.D., Gorinov, D.A., Abbakumov, A.S., and Bober, S.A., Venera-D mission scenario and trajectory, Sol. Syst. Res., 2019, vol. 53, no. 7, pp. 578–585.

    Article  ADS  Google Scholar 

  10. Eismont, N.A., Nazirov, R.R., Fedyaev, K.S., Zubko, V.A., Belyaev, A.A., Zasova, L.V., Gorinov, D.A., and Simonov, A.V., Resonant orbits in the problem of expanding accessible landing areas on the Venus surface, Astron. Lett., 2021, vol. 47, no. 5, pp. 316–330.

    Article  ADS  Google Scholar 

  11. Eismont, N., Kovalenko, I., Nazarov, V., Korotkov, F., Pupkov, M., Zubko, V., Poghodin, A., Mzhelskiy, P., Mikhailov, E., and Ditrikh, A., Orbital and attitude control of Spectr-RG observatory under technical constraints, Space Operations, 2022a, pp. 541–558.

    Book  Google Scholar 

  12. Eismont, N., Zubko, V., Belyaev, A., Fedyaev, K., Zasova, L., Gorinov, D., Simonov, A., and Nazirov, R., Expansion of landing areas on the Venus surface using resonant orbits in the Venera-D project, Acta Astronaut., 2022b, vol. 197, pp. 310–322.

    Article  ADS  Google Scholar 

  13. Garvin, J.B., Getty, S.A., Arney, G.N., Johnson, N.M., Kohler, E., Schwer, K.O., Sekerak, M., Bartels, A., Saylor, R.S., Elliott, V.E., and 29 co-authors, Revealing the mysteries of Venus: The DAVINCI mission, Planet. Sci. J., 2022, vol. 3, no. 5, p. 117.

    Article  Google Scholar 

  14. Glaze, L.S., Wilson, C.F., Zasova, L.V., Nakamura, M., and Limaye, S., Future of Venus research and exploration, Space Sci. Rev., 2018, vol. 214, no. 5, p. 89.

    Article  ADS  Google Scholar 

  15. Golubev, Yu.F., Grushevskii, A.V., Kiseleva, I.P., Koryanov, V.V., Lavrenov, S.M., Tuchin, A.G., and Tuchin, D.A., Ballistic flight planning to Venus in the period 2021–2028. Accessibility areas during landing., Preprints of the Keldysh Inst. of Appl. Math., Russ. Acad. Sci., 2018, no. 76, pp. 1–28.

  16. Golubev, Yu.F., Grushevskii, A.V., Kiseleva, I.P., Koryanov, V.V., Tuchin, A.G., and Tuchin, D.A., A technique for designing highly inclined spacecraft orbits using gravity-assist maneuvers, Dokl. Phys., 2017, vol. 62, pp. 76–79.

    Article  ADS  Google Scholar 

  17. Hirabayashi, M., Mimasu, Y., Sakatani, N., Watanabe, S., Tsuda, Y., and Saiki, T., Hayabusa2 extended mission study group. Hayabusa2 extended mission: New voyage to rendezvous with a small asteroid rotating with a short period, Adv. Space Res., 2021, vol. 68, no. 3, pp. 1533–1555.

    Article  ADS  Google Scholar 

  18. Kikuchi, S., Mimasu, Y., Takei, Y., Saiki, T., Scheeres, D.J., Hirabayashi, M., Wada, K., Yoshikawa, M., Watanabe, S.-I.,Tanaka S., and Tsuda, Y., Preliminary design of the Hayabusa2 extended mission to the fast-rotating asteroid 1998 KY26, Acta Astronaut., 2023, vol. 211, pp. 295–315.

    Article  ADS  Google Scholar 

  19. Lauretta, D.S., Balram-Knutson, S.S., Beshore, E., Boynton, W.V., Drouet d’Aubigny, C., DellaGiustina, D.N., Sandford, S.A., Enos, H.L., Golish, D.R., Hergenrother, C.W., Howell, E.S., and 38 co-authors, OSIRIS-REx: Sample return from asteroid (101955) Bennu, Space Sci. Rev., 2017, vol. 212, pp. 925–984.

    Article  ADS  Google Scholar 

  20. Levison, H.F., Olkin, C.B., Noll, K.S., Marchi, S., Bell, IIIJ.F., Bierhaus, E., Binzel, R., Bottke, W., Britt, D., Brown, M., and 15 co-authors, Lucy mission to the Trojan asteroids. Science goals, Planet. Sci. J., 2021, vol. 2, no. 5, p. 171.

    Article  Google Scholar 

  21. Neugebauer, M., Gloeckler, G., Gosling, J.T., Rees, A., Skoug, R., Goldstein, B.E., Armstrong, T.P., Combi, M.R., Makinen, T., McComas, D.G., and 5 co-authors, Encounter of the Ulysses spacecraft with the ion tail of comet McNaught, Astrophys. J., 2007, vol. 667, no. 2, pp. 1262–1266.

    Article  ADS  Google Scholar 

  22. Olkin, C.B., Levison, H.F., Vincent, M., Noll, K.S., Andrews, J., Gray, S., Good, P., Marchi, S., Christensen, P., Reuter, D., and 12 co-authors, Lucy mission to the Trojan asteroids: Instrumentation and encounter concept of operations, Planet. Sci. J., 2021, vol. 2, no. 5, p. 172.

    Article  Google Scholar 

  23. Petropoulos, B., Physical parameters of the atmosphere of Venus, Earth, Moon, and Planets, 1988, vol. 42, no. 1, pp. 29–40.

    Article  ADS  Google Scholar 

  24. Porco, C.C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J.A., Charnoz, S., Cooper, N., Dawson, D.D., Del Genio, A.D., 20 co-authors, Cassini imaging science: Initial results on Phoebe and Iapetus, Science, 2005, vol. 307, no. 5713, pp. 1237–1242.

    Article  ADS  Google Scholar 

  25. Simonov, A.V., Kovaleva, S.D., Gordienko, E.S., Pol’, V.G., and Kosenkova, A.V., Features of designing trajectories of promising spacecraft for the study of Venus, Inzh. Zh.: Nauka Innovatsii, 2021, no. 10 (118), pp. 7–30.

  26. Smrekar, S., Dyar, M., Hensley, S., Helbert, J., Hensley, S., Nunes, D., and Whitten, J., VERITAS (Venus Emissivity, Radio Science, In SAR, Topography and Spectroscopy): A proposed discovery mission, AAS/Division for Planet. Sci. Meeting Abstracts, 2016, vol. 48, pp. 207–216.

  27. Stern, S.A., Weaver, H.A., Spencer, J.R., Elliott, H.A., and the New Horizons Team, The New Horizons Kuiper Belt extended mission, Space Sci. Rev., 2018, vol. 214, no. 4, pp. 379–394.

    Article  Google Scholar 

  28. Straume-Lindner, A.G., Schulte, M., Voirin, T., Pacros, A., Widemann, T., Bruzzone, L., and the EnVision Team, Science objective and status of the EnVision mission to Venus, AAS/Division for Planetary Sciences Meeting Abstracts, 2023, vol. 55, no. 8, p. 507.05.

  29. Sukhanov, A.A., Dvoinye oblety planet (Double Flybys of the Planet), Moscow: Izd. Inst. Kosm. Issled. RAN, 1993.

  30. Sukhanov, A.A., Trajectory design for the mission ‘Hannes’, Acta Astronaut., 1996, vol. 39 P, pp. 25–34.

  31. Sukhanov, A.A., Astrodinamika (Astrodynamics), Moscow: Izd. Inst. Kosm. Issled. RAN, 2010.

    Google Scholar 

  32. Veverka, J., Thomas, P., Harch, A., Clark, B., Bell, J.F., Carcich, B., Joseph, J., Chapman, C., Merline, W., Robinson, M., and 6 co-authors, NEAR’s flyby of 253 Mathilde: Images of a C asteroid, Science, 1997, vol. 278, no. 5346, pp. 2109–2114.

    Article  ADS  Google Scholar 

  33. Veverka, J., Thomas, P., Harch, A., Clark, B., Bell, J.F. III, Carcich, B., Joseph, J., Murchie, S., Izenberg, N., and 5 co-authors, NEAR encounter with asteroid 253 Mathilde: Overview, Icarus, 1999, vol. 140, no. 1, pp. 3–16.

    Article  ADS  Google Scholar 

  34. Vorontsov, V.A., Lokhmatova, M.G., Martynov, M.B., Pichkhadze, K.M., Simonov, A.V., Khartov, V.V., Zasova, L.V., and 2 co-authors, Prospective spacecraft for Venus research: Venera-D design, Sol. Syst. Res., 2011, vol. 45, pp. 710–714.

    Article  ADS  Google Scholar 

  35. Warner, B.D., Harris, A.W., and Pravec, P., The asteroid lightcurve database, Icarus, 2009, vol. 202, no. 1, pp. 134–146.

    Article  ADS  Google Scholar 

  36. Zasova, L.V., Gorinov, D.A., Eismont, N.A., Kovalenko, I.D., Abbakumov, A.S., and Bober, S.A., Venera-D: A design of an automatic space station for Venus exploration, Sol. Syst. Res., 2018, vol. 53, no. 7, pp. 506–510.

    Article  ADS  Google Scholar 

  37. Zubko, V.A., Possible flight trajectories to Venus with landing in a given region, Astron. Lett., 2022, vol. 48, no. 12, pp. 761–774.

    Article  Google Scholar 

  38. Zubko, V., Analysis of prospective flight schemes to Venus accompanied by an asteroid flyby, Acta Astronaut., 2023, vol. 210, pp. 56–70.

    Article  ADS  Google Scholar 

  39. Zubko, V.A., Eismont, N.A., Fedyaev, K.S., and Belyaev, A.A., A method for constructing an interplanetary trajectory of a spacecraft to Venus using resonant orbits to ensure landing in the desired region, Adv. Space Res., 2023, vol. 72, no. 2, pp. 161–179.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zubko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubko, V.A., Eismont, N.A., Nazirov, R.R. et al. Analysis of Spacecraft Flight Trajectories to Venus with a Flyby of Asteroids. Sol Syst Res 58, 334–352 (2024). https://doi.org/10.1134/S0038094624700163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094624700163

Keywords:

Navigation