Skip to main content
Log in

Current Knowledge of Objects Approaching the Earth

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Modern ideas about objects approaching the Earth are discussed. This population includes near-Earth asteroids (NEAs), including potentially hazardous asteroids, short-period comets, meteoroid streams, and large sporadic meteoroids. An overview is given of the currently available information on the dynamic and physical properties of NEAs and comets. Almost 5% of the currently known NEAs are extinct cometary nuclei or their fragments. Being outwardly similar with true asteroids, they differ markedly in their dynamic and physical properties. In order to distinguish between these groups of objects, it is necessary to study both their dynamic and physical parameters. Some of the known meteoroid streams are shown to contain, along with the countless small meteoroids, also large extinct fragments of cometary nuclei, which are classified as NEAs. A meteoroid stream and such bodies belonging to it form together an asteroid–meteoroid complex. Observational and theoretical data are presented to confirm the modern understanding of near-Earth objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Asher, D.J., Clube, S.V.M., and Steel, D.I., Asteroids in the Taurid Complex, Mon. Not. R. Astron. Soc., 1993a, vol. 264, pp. 93–105.

    Article  ADS  Google Scholar 

  2. Asher, D.J., Clube, S.V.M., and Steel, D.I., The Taurid Complex asteroids, Proc. Int. Astron. Symp. “Meteoroids and Their Parent Bodies,” Smolenice, Slovakia, July 6–12, 1992, Bratislava: Astron. Inst., Slovak Acad. Sci., 1993b, pp. 93–96.

  3. Babadzhanov, P.B., Search for meteor showers associated with near-Earth asteroids. I. Taurid complex, Astron. Astrophys., 2001, vol. 373, pp. 329–335.

    Article  ADS  Google Scholar 

  4. Babadzhanov, P.B. and Kokhirova, G.I., Meteornye potoki asteroidov, peresekayushchikh orbitu Zemli (Meteor Showers of Asteroids Crossing the Earth’s Orbit), Dushanbe: Izd. NANT Donish, 2009.

  5. Babadzhanov, P.B. and Obrubov, Yu.V., Evolution of short-period meteoroid streams, Celestial Mech. Dyn. Astron., 1992, vol. 57, pp. 111–127.

    Article  ADS  Google Scholar 

  6. Babadzhanov, P.B., Williams, I.P., and Kokhirova, G.I., Near-Earth objects in the Taurid complex, Mon. Not. R. Astron. Soc., 2008a, vol. 386, pp. 1436–1442.

    Article  ADS  Google Scholar 

  7. Babadzhanov, P.B., Williams, I.P., and Kokhirova, G.I., The meteor showers associated with 2003 EH1, Mon. Not. R. Astron. Soc., 2008b, vol. 386, pp. 2271–2277.

    Article  ADS  Google Scholar 

  8. Babadzhanov, P.B., Williams, I.P., and Kokhirova, G.I., Near-Earth asteroids among the Piscids meteoroid stream, Astron. Astrophys., 2008c, vol. 479, pp. 249–255.

    Article  ADS  Google Scholar 

  9. Babadzhanov, P.B., Williams, I.P., and Kokhirova, G.I., Near-Earth asteroids among the Iota Aquarids meteoroid stream, Astron. Astrophys., 2009, vol. 507, pp. 1067–1072.

    Article  ADS  Google Scholar 

  10. Babadzhanov, P.B., Williams, I.P., and Kokhirova, G.I., Near-Earth object 2004 CK39 and its associated meteor showers, Mon. Not. R. Astron. Soc., 2012, vol. 420, pp. 2546–2550.

    Article  ADS  Google Scholar 

  11. Babadzhanov, P.B., Williams, I.P., and Kokhirova, G.I., Near-Earth asteroids among the Scorpiids meteoroid complex, Astron. Astrophys., 2013, vol. 556, p. A25.

    Article  ADS  Google Scholar 

  12. Babadzhanov, P.B., Kokhirova, G.I., and Khamroev, U.Kh., The Capricornids asteroid-meteoroid complex, Proc. Astron. Conf. “Meteoroids 2013”, A.M. Univ., Poznan, Poland, Aug. 26–30, 2013, Poznan: A.M. Univ. Press, 2014, pp. 199–204.

  13. Babadzhanov, P.B., Kokhirova, G.I., and Khamroev, U.Kh., The Sigma-Capricornids complex of near-Earth objects, Adv. Space Res., 2015a, vol. 55, pp. 1784–1791.

    Article  ADS  Google Scholar 

  14. Babadzhanov, P.B., Kokhirova, G.I., and Obrubov, Yu.V., The potentially hazardous asteroid 2007 CA19 as the parent of the η-Virginid meteoroid stream, Astron. Astrophys., 2015b, vol. 579, p. A119.

    Article  ADS  Google Scholar 

  15. Babadzhanov, P.B., Kokhirova, G.I., and Obrubov, Yu.V., Extinct comets and asteroid-meteoroid complexes, Sol. Syst. Res., 2015c, vol. 49, pp. 165–172.

    Article  ADS  Google Scholar 

  16. Babadzhanov, P.B., Kokhirova, G.I., and Obrubov, Yu.V., Formation and evolution of meteoroid swarms. Asteroid and meteoroid complexes, Sb. tr. Mezhdunarodnoi konferentsii “V Bredikhinskie chteniya” (Proc. Int. Conf. “V Bredikhin Readings”), Sachkov, M.E., Kartashov, A.P., Emel’yanenko, V.V., Eds., Moscow: Izd. Yanus-K, 2015d, pp. 165–181.

  17. Babadzhanov, P.B., Kokhirova G.I., and Khamroev, U.Kh., Object 2015 TV145—is it an asteroid or an extinct comet?, Dokl. Akad. Nauk Resp. Tatarstan, 2016, vol. 59, nos. 1–2, pp. 33–40.

    Google Scholar 

  18. Babadzhanov, P.B., Kokhirova, G.I., Williams, G.I., and Obrubov, Yu.V., Investigation into the relationship between comet 96P/Machholz 1 and asteroid 2003 EH1, Astron. Astrophys., 2017, vol. 598, p. A94.

    Article  ADS  Google Scholar 

  19. Ballouz, R., Walsh, K., Bottke, W., DellaGiustina, D.N., Al Asad, M.M., Michel, P., Avdellidou, C., Delbo, M., Jawin, E.R., Asphaug, E., and 10 co-authors, Craters on (101955) Bennu’s boulders, Bull. Am. Astron. Soc., 2020a, vol. 52, no. 6, p. 2020n6i402p01.

  20. Ballouz, R.L., Walsh, K.J., Barnouin, O.S., DellaGiustina, D.N., Al Asad, M.M., Jawin, E.R., Daly, M.G., Bottke, W.F., Michel, P., Avdellidou, C., and 15 co-authors, Bennu’s near-Earth lifetime of 1.75 million years inferred from craters on its boulders, Nature, 2020b, vol. 587, pp. 205–209.

    Article  ADS  Google Scholar 

  21. Betzler, A.S. and Borges, E.P., Nonextensive distributions of asteroid rotation periods and diameters, Astron. Astrophys., 2012, vol. 539, p. A158.

    Article  ADS  Google Scholar 

  22. Borovicka, J., About the definition of meteoroid, asteroid, and related terms, WGN, J. Int. Meteor Organization, 2016, vol. 44, no. 2, pp. 31–34.

    ADS  Google Scholar 

  23. Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., and Metcalfe, T.S., Debiased orbital and absolute magnitude distribution of the near-Earth objects, Icarus, 2002, vol. 156, pp. 399–433.

    Article  ADS  Google Scholar 

  24. Bowell, E., Buie, M.W., and Picken, H., (4015) 1979 VA = Comet Wilson–Harrington (1949 III), IAU Circ., 1992, no. 5585.

  25. Brisset, J., Cox, C., Anderson, S., Hatchitt, J., Madison, A., Mendonca, M., Partida, A., and Remie, D., Regolith behavior under asteroid-level gravity conditions: Low-velocity impacts into mm- and cm-sized grain targets, Astron. Astrophys., 2020, vol. 642, p. A198.

    Article  ADS  Google Scholar 

  26. Britt, D.T. and Consolmagno, G.J., Asteroid bulk density, Bull. Am. Astron. Soc., 2000, vol. 32, p. 999.

    ADS  Google Scholar 

  27. Britt, D.T., Yeomans, D., Housen, K., and Consolmagno, G., Asteroid density, porosity, and structure, in Asteroids III, Bottke, W.F., Jr., Cellino, A., Paolicchi, P., and Binzel R.P., Eds., Tucson: Univ. Arizona Press, 2002, pp. 485–500.

    Google Scholar 

  28. Bus, S.J. and Binzel, R.P., Phase II of the small Main-Belt asteroid spectroscopic survey. A feature-based taxonomy, Icarus, 2002, vol. 158, pp. 146–177.

    Article  ADS  Google Scholar 

  29. Center for Near Earth Object Studies. Discovery Statistics. https://cneos.jpl.nasa.gov/stats/. Accessed March 23, 2023.

  30. Center for Near Earth Object Studies. NEO Search Program, 2022. https://cneos.jpl.nasa.gov/about/search_ program.html.

  31. Chamberlin, A., JPL/Caltech, 2007. https://cneos.jpl.nasa.gov.

  32. Chan, Q.H.S., Stephant, A., Franchi, I.A., Zhao, X., Brunetto, R., Kebukawa, Y., Noguchi, T., Johnson, D., Price, M.C., Harriss, K.H., Zolensky, M.E., and Grady, M.M., Organic matter and water from asteroid Itokawa, Sci. Rep., 2021, vol. 11, p. 5125.

    Article  ADS  Google Scholar 

  33. Chapman, C.R., Merline, W.J., Thomas, P.C., Joseph, J., Cheng, A.F., and Izenberg, N., Impact history of Eros: Craters and boulders, Icarus, 2002, vol. 155, pp. 104–118.

    Article  ADS  Google Scholar 

  34. Cook, A.F., A working list of meteor streams, in Evolutionary and Physical Properties of Meteoroids, Hemenway, C.L., Millman, P.M., and Cook, A.F, Eds., Washington, DC: NASA, SP-319, 1973.

  35. Dellagiustina, D.N., Emery, J.P., Golish, D.R., Emery, J.P., Golish, D.R., Rozitis, B., Bennett, C.A., Burke, K.N., Ballouz, R.-L., Becker, K.J., Christensen, P.R., Drouet D’Aubigny, C.Y., and 46 co-authors, Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis, Nat. Astron., 2019, vol. 3, pp. 341–351.

    Article  ADS  Google Scholar 

  36. Dobrovol’skii, O.V., Nestatsionarnye protsessy v kometakh i solnechnaya aktivnost’ (Non-stationary Processes in Comets and Solar Activity), Dushanbe: Izd. Akad. Nauk TadzhSSR, 1961.

  37. Ellis, T.A. and Neff, J.S., A comparison of modeled and observed intensity profiles for C2, C3, CN, and the continuum for P/Halley, Icarus, 1992, vol. 97, pp. 99–110.

    Article  ADS  Google Scholar 

  38. Emel’yanenko, V.V., Asher, D.J., and Bailey, M.E., A model for the common origin of Jupiter family and Halley type comets, Earth, Moon, and Planets, 2013, vol. 110, pp. 105–130.

    Article  ADS  Google Scholar 

  39. ESA Rosetta Mission, 2014. https://esa.int/rosetta/2014/10/03/measuring-comet-67pc-g/.

  40. Fernandez, Y.R., McFadden, L.A., Lisse, C.M., Helin, E.F., and Chamberlin, A.B., Analysis of POSS images of comet-asteroid transition object 107P/1949 W1 (Wilson–Harrington), Icarus, 1997, vol. 128, pp. 114–126.

    Article  ADS  Google Scholar 

  41. Fujiwara, A., Kawaguchi, J., Yeomans, D.K., Abe, M., Mukai, T., Okada, T., Saito, J., Yano, H., Yoshikawa, M., Scheeres, D.J., and 12 co-authors, The rubble-pile asteroid Itokawa as observed by Hayabusa, Science, 2006, vol. 312, pp. 1330–1334.

    Article  ADS  Google Scholar 

  42. Gicquel, A., Vincent, J.-B., Agarwal, J., A’Hearn, M.F., Bertini, I., Bodewits, D., Sierks, H., Lin, Z.-Y., Barbieri, C., Lamy, P.L., and 51 co-authors, Sublimation of icy aggregates in the coma of comet 67P/Churyumov–Gerasimenko detected with the OSIRIS cameras on board Rosetta, Mon. Not. R. Astron. Soc., 2016, vol. 462, pp. S57–S66.

    Article  Google Scholar 

  43. Gradie, J.C., Chapman, C.R., and Tedesco, E.F., Distribution of taxonomic classes and the compositional structure of the Asteroid Belt, in Asteroids II, Binzel, R.P., Gehrels, T., and Matthews, M.S., Eds., Tucson: Univ. Arizona Press, 1989, p. 321.

    Google Scholar 

  44. Green, D.W.E., Rickman, H., Porter, A.C., and Meeech, K.J., The strange periodic comet Machholz, Science, 1990, vol. 247, pp. 1063–1067.

    Article  ADS  Google Scholar 

  45. Gundlach, B. and Blum, J., A new method to determine the grain size of planetary regolith, Icarus, 2013, vol. 223, pp. 479–492.

    Article  ADS  Google Scholar 

  46. Hanus, J., Viikinkoski, M., Marchis, F., Durech, J., and Kaasalainen, M., Delbo’ M., Herald, D., Frappa, E., Hayamizu, T., Kerr, S., and 4 co-authors, Volumes and bulk densities of forty asteroids from ADAM shape modeling, Astron. Astrophys., 2017, vol. 601, p. A114.

    Article  Google Scholar 

  47. Harris, A.W. and Burns, J.A., Asteroid rotation. I. Tabulation and analysis of rates, pole positions and shapes, Icarus, 1979, vol. 40, p. 115.

    Article  ADS  Google Scholar 

  48. Hsieh, H.H. and Jewitt, D., A population of comets in the main asteroid belt, Science, 2006, vol. 312, pp. 561–563.

    Article  ADS  Google Scholar 

  49. Jenniskens, P. and Marsden, B.G., 2003 EH1 and the Quadrantids, IAU Circ., 2003, no. 8252, p. 2.

  50. Jenniskens, P., 2003 EH1 is the Quadrantid shower parent comet, Astron. J., 2004, vol. 127, pp. 3018–3022.

    Article  ADS  Google Scholar 

  51. Jenniskens, P., Meteor Showers and Their Parent Comets, New York: Cambridge Univ. Press, 2006.

    Book  Google Scholar 

  52. Jenniskens, P., Nenon, Q., Albers, J., Gural, P.S., Haberman, B., Holman, D., Morales, R., Grigsby, B.J., Samuels, D., and Johannink, C., The established meteor showers as observed by CAMS, Icarus, 2016, vol. 266, pp. 331–354.

    Article  ADS  Google Scholar 

  53. Jet Propulsion Laboratory. Small-Body Database Lookup. https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?sstr= apophis&view=OPC. Accessed April 1, 2022.

  54. Jet Propulsion Laboratory. Solar System Dynamics. https://ssd.jpl.nasa.gov/. Accessed March 23, 2023.

  55. Jewitt, D.C., The active asteroids, Astron. J., 2012, vol. 143.

  56. Jewitt, D., Hsieh, H., and Agarwal, J., The active of asteroids, in Asteroids IV, Michel, P., DeMeo, F., and Bottke, W., Eds., Tucson: Univ. Arizona Press, 2015, pp. 221–241.

    Google Scholar 

  57. Kanuchova, Z. and Neslusan, L., The parent bodies of the Quadrantid meteoroid stream, Astron. Astrophys., 2007, vol. 470, pp. 1123–1136.

    Article  ADS  Google Scholar 

  58. Khashimov, N.M. and Shoekubov, Sh.Sh., Laboratory modeling of the formation of molecular carbon ions in comets, Dokl. Akad. Nauk TadzhSSR, 1989, vol. 32, pp. 22–25.

    ADS  Google Scholar 

  59. Khashimov, N.M., Ibadinov, Kh.I., and Shoekubov, Sh.Sh., Laboratory study of the possibility of formation of refractory substances in comets, Dokl. Akad. Nauk TadzhSSR, 1994, vol. 37, pp. 16–19.

    Google Scholar 

  60. Kokhirova, G.I., Babadzhanov, P.B., and Khamroev, U.H., On a possible cometary origin of the object 2015TB145, Planet. Space Sci., 2017, vol. 143, pp. 164–168.

    Article  ADS  Google Scholar 

  61. Kokhirova, G.I., Babadzhanov, P.B., Khamroev, U.Kh., Dzhonmukhammadi, A.I., and Kulaev, I.V., Virginid asteroid-meteoroid complex. I. Asteroids associated with the Alpha Virginids meteoroid swarm, Dokl. Akad. Nauk Resp. Tatarstan, 2020a, vol. 63, pp. 187–198.

    Google Scholar 

  62. Kokhirova, G.I., Babadzhanov, P.B., Khamroev, U.Kh., Dzhonmukhammadi, A.I., and Kulaev I.V., Asteroid-meteoroid complex of Beta-Librids, Izv. Akad. Nauk Resp. Tatarstan. Otd. FMKhGTN, 2020b, no. 3 (180), pp. 43–54.

  63. Kokhirova, G.I., Babadzhanov, P.B., Khamroev, U.Kh., and Dzhonmukhammadi, A.I., Asteroids associated with the Librids-Lupids meteoroid swarm, Izv. Akad. Nauk Resp. Tatarstan. Otd. FMKhGTN, 2020c, no. 4 (181), pp. 41–48.

  64. Kokhirova, G.I., Babadzhanov, P.B., Khamroev, U.Kh., Dzhonmukhammadi, A.I., Kulaev, I.V., Virginid asteroid-meteoroid complex. II. Asteroids associated with the Eta Virginids meteoroid swarm, Dokl. Akad. Nauk Resp. Tatarstan, 2020d, vol. 63, pp. 591–597.

    Google Scholar 

  65. Kokhirova G.I., Babadzhanov P.B., Khamroev U.Kh., and Dzhonmukhammadi, A.I., Virginid asteroid-meteoroid complex. III. Asteroids associated with the Nu Virginid meteoroid swarm, Dokl. Akad. Nauk Resp. Tatarstan, 2020e, vol. 63, pp. 708–714.

    Google Scholar 

  66. Kokhirova, G.I., Ivanova, O.V., and Rakhmatullaeva, F.D., Results of observations of asteroid Don Quixote at the Sanglokh observatory, INASAN Sci. Rep., 2020f, vol. 5, no. 4, pp. 196–200.

    ADS  Google Scholar 

  67. Kokhirova, G.I., Babadzhanov, P.B., Khamroev, U.Kh., Dzhonmukhammadi, A.I., and Kulaev, I.V., Virginid asteroid-meteoroid complex. IV. Asteroids associated with the Mu Virginid meteoroid swarm, Dokl. Akad. Nauk Resp. Tatarstan, 2021a, vol. 64, pp. 57–63.

    Google Scholar 

  68. Kokhirova, G.I., Ivanova, O.V., and Rakhmatullaeva, F.D., Evidence of the cometary nature of asteroid Don Quixote provided by observations at the Sanglokh observatory, Sol. Syst. Res., 2021b, vol. 55, pp. 61–70.

    Article  ADS  Google Scholar 

  69. Kokhirova, G.I., Babadzhanov, P.B., Latipov, M.N., Dzhonmukhammadi, A.I., and Khamroev, U.Kh., New near-Earth objects in the Taurid complex, Izv. Akad. Nauk Resp. Tatarstan. OFMKhGTN, 2022, no. 1 (186), pp. 40–61.

  70. Kramer, T. and Lauter, M., Outgassing-induced acceleration of comet 67p/Churyumov–Gerasimenko, Astron. Astrophys., 2019, vol. 630, p. A4.

    Article  ADS  Google Scholar 

  71. Krankowsky, D., Lammerzahl, P., Herrwerth, I., Woweries, J., Eberhardt, P., Dolder, U., Herrmann, U., Schulte, W., Berthelier, J.J., Illiano, J.M., and 2 co-authors, In situ gas and ion measurements at comet Halley, Nature, 1986, vol. 321, p. 326.

    Article  ADS  Google Scholar 

  72. Krasnopolsky, V.A., Godoshev, M., Moreels, G., Moroz, V.I., Krysko, A.A., Gogosheva, Ts., Palazov, K., Sargoichev, S., Clairemidi, J., Vincent, M., and 4 co-authors, Spectroscopic study of comet Halley by the Vega 2 three-channel spectrometer, Nature, 1986, vol. 321, pp. 269–270.

    Article  ADS  Google Scholar 

  73. Küppers, M., The regolith of asteroid 433/Eros, Abstracts of EGS XXVII GA, Nice, April 21–26, 2002, p. 4231.

  74. Kwiatkowski, T., Polinska, M., Loaring, N., Buckley, D.A.H., O’Donoghue, D., Kniazev, A., and Romero Colmenero, E., Photometric survey of the very small near-Earth asteroids with the salt telescope. III. lightcurves and periods for 12 objects and negative detections, Astron. Astrophys., 2010, vol. 511, p. A49.

    Article  ADS  Google Scholar 

  75. Lamy, P.L., Toth, I., Fernandez, Y.R., and Weaver, H.A., The sizes, shapes, albedos, and colors of cometary nuclei, in Comets II, Festou, M.C., Keller, H.U., and Weaver, H.A., Eds., Tucson: Univ. Arizona Press, 2004, pp. 223–264.

    Google Scholar 

  76. Madiedo, J.M., Trigo-Rodriguez, J.M., Williams, I.P., Ortiz, J.L., and Cabrera, J., The Northern χ-Orionid meteoroid stream and possible association with the potentially hazardous asteroid 2008XM1, Mon. Not. R. Astron. Soc., 2013, vol. 431, pp. 2464–2470.

    Article  ADS  Google Scholar 

  77. Matsumoto, T., Noguchi, T., Miyake, A., Igami, Y., Haruta, M., Saito, H., Hata, S., Seto, Y., Miyahara, M., Tomioka, N., and 10 co-authors, Space weathering of anhydrous minerals in regolith samples from the C-type asteroid Ryugu, Abstracts 53rd Lunar and Planet. Sci. Conf., 2022. 1693.pdf.

  78. McFadden, L.A., Cochran, A.L., Barker, E.S., Cruikshank, D.P., and Hartmann, W.K., The enigmatic object 2201 Oljato: Is it an asteroid or an evolved comet?, J. Geophys. Res.: Planets, 1993, vol. 98, pp. 3031–3041.

    Article  ADS  Google Scholar 

  79. Minor Planet Center. https://minorplanetcenter.net/mpc/summary. Accessed March 23, 2023.

  80. Mommert, M., Trilling, D., Knight, M.M., Hora, J., Biver, N., Womack, M., Wierzchos, K., Polishook, D., Veres, P., Gustafsson, A., and 6 co-authors, Systematic characterization and monitoring of potentially active asteroid: The case of Don Quixote, AAS Division of Planet. Sci. Meeting 50, id. 505.05, Am. Astron. Soc., 2018.

  81. Mommert, M., Hora, J.L., Harris, A.W., Reach, W.T., Emery, J.P., Thomas, C.A., Mueller, M., Cruikshank, D.P., Trilling, D.E., Delbo, M., and Smith, H.A., The discovery of cometary activity in near-Earth asteroid (3552) Don Quixote, Astrophys. J., 2014, vol. 781, p. 25M.

    Article  ADS  Google Scholar 

  82. Nakamura, T., Noguchi, T., Tanaka, M., Zolensky, M.E., Kimura, M., Tsuchiyama, A., Nakato, A., Ogami, T., Ishida, H., Uesugi, M., and 12 co-authors, Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites, Science, 2011, vol. 333, pp. 1113–1116.

    Article  ADS  Google Scholar 

  83. NASA Space Science Data Coordinated Archive. NEAR Shoemaker. https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1996-008A. Accessed 2022.

  84. Neslusan, L., Kanuchova, Z., and Tomko, D., The meteor-showers complex of 96p/Machholz revised, Astron. Astrophys., 2013a, vol. 551.

  85. Neslusan, L., Hajdukova, M., and Jakubik, M., Meteor-showers complex of asteroid 2003EH1 compared with that of comet 96P/Machholz, Astron. Astrophys., 2013b, vol. 560, p. A47.

    Article  ADS  Google Scholar 

  86. Opik, E., The stray bodies in the Solar System. I. Survival time of cometary nuclei, Adv. Astron. Astrophys., 1963, vol. 2, pp. 219–262.

    Article  ADS  Google Scholar 

  87. Ostro, S.J., Campbell, D.B., Chandler, J.F., Shapiro, I.I., Hine, A.A., Velez, R., Jurgens, R.F., Rosema, K.D., Winkler, R., and Yeomans, D.K., Asteroid radar astrometry, Astron. J., 1991, vol. 102, pp. 1490–1502.

    Article  ADS  Google Scholar 

  88. Patzold, M., Abdert, T., Hahn, M., Asmar, S.W., Barriot, J.-P., Bird, M.K., Hausler, B., Peter, K., Tellmann, S., Grün, E., and 10 co-authors, A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field, Nature, 2016, vol. 530, pp. 63–65.

    Article  ADS  Google Scholar 

  89. Porubcan, V. and Gavajdova, M., A search for fireball streams among photographic meteors, Planet. Space Sci., 1994, vol. 42, pp. 151–155.

    Article  ADS  Google Scholar 

  90. Porubcan, V. and Kornos, L., The Taurid meteor shower, Proc. Asteroids, Comets, Meteors—ACM 2002. Int. Conf., July 29–August 2, 2002, Berlin, Germany, Warmbein, B., Ed., Noordwijk, Netherlands: ESA Publications Division, 2002, pp. 177–180.

  91. Porubcan, V., Kornos, L., and Williams, I.P., Associations between asteroids and meteoroid streams, Earth, Moon Planets, 2004, vol. 95, pp. 697–712.

    Article  ADS  Google Scholar 

  92. Porubcan, V., Kornos, L., and Williams, I.P., The Taurid complex meteor showers and asteroids, Contrib. Astron. Obs. Scalnate Pleso, 2006, vol. 36, pp. 103–117.

    ADS  Google Scholar 

  93. Pravec, P. and Harris, A.W., Fast and slow rotation of asteroids, Icarus, 2000, vol. 148, p. 12.

    Article  ADS  Google Scholar 

  94. Pravec, P., Harris, A.W., Scheirich, P., Kušnirák, P., Šarounová, L., Hergenrother, C.W., Mottola, S., Hicks, M.D., Masi, G., Krugly, Yu.N., and 10 co-authors, Tumbling asteroids, Icarus, 2005, vol. 173, pp. 108–131.

    Article  ADS  Google Scholar 

  95. Pravec, P., Harris, A.W., and Warner, B.D., NEA rotations and binaries, in Near-Earth Objects, Our Celestial Neighbors: Opportunity and Risk, Proc. IAU Symp. 236, Valsecchi, G.B., Vokrouhlický, D., and Milani, A., Eds., Cambridge: Cambridge Univ. Press, 2007.

  96. Pravec, P., Harris, A.W., Kusnirak, P., Galád, A., and Hornoch, K., Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations, Icarus, 2012, vol. 221, pp. 365–387.

    Article  ADS  Google Scholar 

  97. Rozitis, B., Green, S.F., MacLennan, E., and Emery, J.P., Observing the variation of asteroid thermal inertia with heliocentric distance, Mon. Not. R. Astron. Soc., 2018, vol. 477, pp. 1782–1802.

    Article  ADS  Google Scholar 

  98. Rubin, M., Altwegg, K., Balsiger, H., Berthelier, J.-J., Combi, M.R., De Keyser, J., Drozdovskaya, M., Fiethe, B., Fuselier, S.A., Gasc, S., and 11 co-authors, Elemental and molecular abundances in comet 67P/Churyumov–Gerasimenko, Mon. Not. R. Astron. Soc., 2019, vol. 489, pp. 594–607.

    Article  ADS  Google Scholar 

  99. Rudawska, R., Vaubaillon, J., and Jenniskens, P., Asteroid 2005UW6—a ‘new’ object in the Taurid complex?, Proc. Conf. “Asteroids, Comets, Meteors 2012,” May 16–20, 2012, Niigata, Japan, LPI Contrib. 1667, 2012b, p. 6222.

  100. Rudawska, R., Vaubaillon, J., and Jenniskens, P., Asteroid 2010TU149 in the Taurid complex, Eur. Planet. Sci. Congress, September 23–28, 2012, Madrid, Spain, 2012a, p. espc.886.

  101. Russell, C.T., Aroian, R., Arghavani, M., and Nock, K., Interplanetary magnetic field enhancements and their association with the asteroid 2201 Oljato, Science, 1984, vol. 226, pp. 43–45.

    Article  ADS  Google Scholar 

  102. Sagdeev, R.Z., Szabo, F., Avanesov, G.A., Cruvellier, P., Szabo, L., Szego, K., Abergel, A., Balazs, A., Barinov, I.V., Bertaux, J.-L., and 28 co-authors, Television observations of comet Halley from Vega spacecraft, Nature, 1986, vol. 321, pp. 262–266.

    Article  ADS  Google Scholar 

  103. Saito, J., Miyamoto, H., Nakamura, R., Ishiguro, M., Michikami, T., Nakamura, A.M., Demura, H., Sasaki, S., Hirata, N., Honda, C., and 24 co-authors, Detailed images of asteroid 25143 Itokawa from Hayabusa, Science, 2006, vol. 312, pp. 1341–1344.

    Article  ADS  Google Scholar 

  104. Sekanina, Z., Periodic comet Machholz and its idiosyncrasies, Astron. J., 1990, vol. 99, pp. 1268–1278.

    Article  ADS  Google Scholar 

  105. Shul’man, L.M., Dinamika kometnykh atmosfer. Neitral’nyi gaz (Dynamics of Cometary Atmospheres. Neutral Gas), Kiev: Naukova dumka, 1972.

  106. Sierks, H., Barbieri, C., Lamy, P.L., Rodrigo, R., Koschny, D., Rickman, H., Keller, H.U., Agarwal, J., A’Hearn, M.F., Angrilli, F., and 56 co-authors, On the nucleus structure and activity of comet 67P/Churyumov–Gerasimenko, Science, 2015, vol. 347, p. aaa1044.

    Article  Google Scholar 

  107. Siltala, L. and Granvik, M., Masses, bulk densities, and macroporosities of asteroids (15) Eunomia, (29) Amphitrite, (52) Europa, and (445) Edna based on Gaia astrometry, Astron. Astrophys., 2022, vol. 658, p. A65.

    Article  ADS  Google Scholar 

  108. Southworth, R.B. and Hawkins, G.S., Statistics of meteor streams, Smith. Contrib. Astrophys., 1963, vol. 7, pp. 261–285.

    ADS  Google Scholar 

  109. Standish, E.M., JPL Interoffice Memorandum 312.F-01-006.-2001, April 11, 2001.

  110. Terent’eva, A.K., Small meteor swarms, in Rezul’taty issledovanii po mezhd. geofiz. proektam. Issledovanie meteorov. No. 1 (The Results of Research on Int. Geophys. Projects. Research of Meteors. No. 1), Moscow: Nauka, 1966, pp. 62–132.

  111. Terentjeva, A.K., Fireball streams, in Asteroids, Comets, Meteors III, Lagerkvist, C.I., Rickman, H., Lindblad, B.A., and Lindgren, M., Eds., Uppsala: Univ. Reprocentralen, 1989, pp. 579–584.

    Google Scholar 

  112. Tholen, D.J., Asteroid taxonomic classifications, in Asteroids II, Binzel, R.P., Gehrels, T., and Matthews, M.S., Eds., Tucson: Univ. Arizona Press, 1989, pp. 1139–1150.

    Google Scholar 

  113. Veeder, G.J., Hanner, M.S., Matson, D.L., Tedesco, E.F., Lebofsky, L.A., and Tokunaga, A.T., Radiometry of near-Earth asteroids, Astron. J., 1989, vol. 97, pp. 1211–1219.

    Article  ADS  Google Scholar 

  114. Veverka, J., Thomas, P.C., Robinson, M., Murchie, S., Chapman, C., Bell, M., Harch, A., Merline, W.J., Bell, J.F., Bussey, B., and 23 co-authors, Imaging of small-scale features on 433 Eros from NEAR: Evidence for a complex regolith, Science, 2001, vol. 292, pp. 484–488.

    Article  ADS  Google Scholar 

  115. Weissman, P.R., A’Hearn, M.F., Rickman, H., and McFadden, L.A., Evolution of comets into asteroids, in Asteroids II; Proc. Conf., Tucson, AZ, March 8–11, 1988 (A90-27001 10-91), Tucson: Univ. Arizona Press, 1989, pp. 880–920.

  116. Weissman, P.R., Bottke, W.F., Jr., and Levison, H.F., Evolution of comets into asteroids, in Asteroids III, Bottke, W.F., Jr., Cellino, A., Paolicchi, P., Binzel, R.P., Eds., Tucson: Univ. Arizona Press, 2002, pp. 669–686.

    Google Scholar 

  117. Whipple, F.L., A comet model I. The acceleration of comets, Astrophys. J., 1950, vol. 111, no. 2, pp. 375–394.

    Article  ADS  Google Scholar 

  118. Whipple, F.L., A comet model II. Physical relation for comets and meteors, Astrophys. J., 1951, vol. 113, no. 3, pp. 464–474.

    Article  ADS  Google Scholar 

  119. Whipple F.L. A comet model III. The zodiacal light, Astrophys. J., 1955, vol. 121, p. 750.

    Article  ADS  Google Scholar 

  120. Wiegert, P. and Brown, P., The Quadrantid meteoroid complex, Icarus, 2005, vol. 179, pp. 139–157.

    Article  ADS  Google Scholar 

  121. Williams, I.P., Ryabova, G.O., Baturin, A.D., and Chernetsov, A.M., The parent of the Quadrantid meteoroid stream and asteroid 2003 EH1, Mon. Not. R. Astron. Soc., 2004, vol. 355, pp. 1171–1181.

    Article  ADS  Google Scholar 

  122. Wurz, P., Altwegg, K., Balsiger, H.R., Berthelier, J.J., De Keyser, J., Fiethe, B., Fuselier, S.A., Gasc, S., Gombosi, T.I., Korth, A., and 4 co-authors, Chemical composition of the semi-volatile grains of comet 67P/Churyumov–Gerasimenko, Am. Geophys. Union, Fall Meeting, 2017a, p. P51D-2625.

  123. Wurz, P., Altwegg, K., Balsiger, H., Berthelier, J.-J., Bieler, A., Calmonte, U., De Keyser, J., Fiethe, B., Fuselier, S., Gasc, S., and 8 co-authors, Chemical composition of the semi-volatile grains of comet 67P/Churyumov–Gerasimenko, Proc. 19th EGU GA, EGU2017 Conf., 23–28 April, 2017, Vienna, Austria, 2017b, p. 5587.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Kokhirova.

Additional information

Translated by A. Kobkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokhirova, G.I., Babadzhanov, P.B. Current Knowledge of Objects Approaching the Earth. Sol Syst Res 57, 467–485 (2023). https://doi.org/10.1134/S0038094623050039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623050039

Keywords:

Navigation