Skip to main content
Log in

Native Nickel–Iron Metals from Lonar Crater Impactites (India) and Regolith of the Moon

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The Lonar crater (India) is the best preserved and most studied on Earth, formed in basalts, which makes it possible to conduct a comparative study with impact transformations of mineral matter on the Moon and other planets of the Solar System. Comparative studies have shown that impactor material, both on the Earth and on the Moon, is present in impactites not only in a geochemically dispersed form, as previously thought, but also in the form of individual submicron particles distributed in the molten target material. These are particles of native nickel, taenite, and high-nickel kamacite, which, apparently, are the transformed material of the impactor. High-nickel submicron metal inclusions are widespread in the impactites of the Lonar crater, as they were found in all studied preparations made from materials collected from different points along the rim of the crater. The high-nickel particles found in this study are an additional argument in favor of the previously stated assumption about the chondrite type of impactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Artemieva, N. and Pierazzo, E., The Canyon Diablo impact event: 2. Projectile fate and target melting upon impact, Meteoritics Planet. Sci., 2011, vol. 46, no. 6, pp. 805–829.

    Article  ADS  Google Scholar 

  2. Basilevsky, A.T. and Nazarov, M.A., Otchet o rezul’tatakh komandirovaniya uchenykh za granitsu; strana komandirovaniya Indiya (Report on the Results of Sending Scientists Abroad; Country of Posting: India), Inst. Geokhim. Anal. Khim. Akad. Nauk SSSR, 1983.

  3. Chao, E.C.T., Dwornik, E.J., and Littler, J., New data on the nickel-iron spherules from Southeast Asian tektites and their implications, Geochim. Cosmochim. Acta, 1964, vol. 28, no. 6, pp. 971–974.

    Article  ADS  Google Scholar 

  4. Crawford, A.R., Mantle convection pattern under India: Relevance to Lonar crater, Girnar node and peri-Indian volcanism, J. Geol. Soc. India, 1983, vol. 24, no. 2, pp. 97–100.

    Google Scholar 

  5. D’Orazio, M., Folco, L., Zeoli, A., and Cordier, C., Gebel Kamil: The iron meteorite that formed the Kamil crater (Egypt), Meteoritics Planet. Sci., 2011, vol. 46, no. 8, pp. 1179–1196.

    Article  ADS  Google Scholar 

  6. Ebert, M., Hecht, L., Deutsch, A., and Kenkmann, T., Chemical modification of projectile residues and target material in a MEMIN cratering experiment, Meteoritics Planet. Sci., 2013, vol. 48, no. 1, pp. 134–149.

    Article  ADS  Google Scholar 

  7. Fredriksson, K., Dube, A., Milton, D.J., and Balasundara, M.S., Lonar Lake, India: An impact crater in basalt, Science, 1973, vol. 180, no. 4088, pp. 862–864.

    Article  ADS  Google Scholar 

  8. French, B.M., Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures, LPI Contribution no. 954, Houston: Lunar and Planetary Institute, 1998.

    Google Scholar 

  9. Frondel, J.W., Lunar Mineralogy, New York: Wiley-Interscience, 1975.

    Google Scholar 

  10. Glass, B.P., Fredriksson, K., and Florensky, P.V., Microirghizites recovered from a sediment sample from the Zhamanchin impact structure, J. Geophys. Res.: Solid Earth, 1983, vol. 88 Suppl., pp. 319–330.

    Article  Google Scholar 

  11. Glavatskikh, S.F. and Trubkin, N.V., Native tellurium and nickel from high-temperature gas sublimates of the Great Fissure Tolbachik Eruption, Kamchatka, Dokl. Akad. Nauk, 2003, vol. 389, no. 2, pp. 231–234.

    Google Scholar 

  12. Gore, R., Mishra, A., and Deshmukh, R., Exploring the mineralogy at Lonar crater with hyperspectral remote sensing, J. Geol. Soc. India, 2021, vol. 97, pp. 261–266.

    Article  Google Scholar 

  13. Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A., Cosmogenic substances in the Zhamanshin crater, Dokl. Earth Sci., 2018, vol. 478, pp. 204–207.

    Article  ADS  Google Scholar 

  14. Gritsenko, Yu. and Polushkina, S., Occurrence of native iron on the Maimecha River, Krasnoyarsk krai, Russia, X mezhdunarodnyi simpozium “Mineral’noe raznoobrazie, issledovanie i sokhranenie” (X International Symposium “Mineral Diversity, Exploration and Preservation”), Sofia: Nats. muzei Zemlya i lyudi, 2020, pp. 201–206.

  15. Jaret, S.J., Phillips, B.L., King, D.T., Jr., Glotch, T.D., Rahman, Z., and Wright, S.P., An unusual occurrence of coesite at the Lonar crater, India, Meteoritics Planet. Sci., 2017, vol. 52, no. 1, pp. 147–163.

    Article  ADS  Google Scholar 

  16. Kartashov, P.M., Mokhov, A.V., Gornostaeva, T.A., Bogatikov, O.A., and Ashikhmina, N.A., Mineral phases on cleavages of glass particles in a preparation of a finely dispersed fraction from a sample of regolith from Luna 24, Petrologiya, 2010, vol. 18, no. 2, pp. 115–133.

    Google Scholar 

  17. Kearsley, A., Graham, G., McDonnell, T., Bland, P., Hough, R., and Helps, P., Early fracturing and impact residue emplacement: Can modeling help to predict their location in major craters?, Meteoritics Planet. Sci., 2004, vol. 39, no. 2, pp. 247–265.

    Article  ADS  Google Scholar 

  18. Kleinmann, B., Magnetite bearing spherules in tektites, Geochim. Cosmochim. Acta, 1969, vol. 33, no. 9, pp. 1113–1120.

    Article  ADS  Google Scholar 

  19. Lafond, E.C. and Dietz, R.S., Lonar crater, India, a meteorite crater?, Meteoritics, 1964, vol. 2, no. 2, pp. 111–116.

    Article  ADS  Google Scholar 

  20. Makeev, A.B., Kisel’, S.I., Sobolev, V.K., Filippov, V.N., and Bryanchaninova, V.I., Native metals in the haloes of kimberlite pipes of the Arkhangelsk diamondiferous province, Dokl. Akad. Nauk, 2002, vol. 385, no. 5, pp. 677–681.

    Google Scholar 

  21. Maloof, A.C., Stewart, S.T., Weiss, B.P., Soule, S.A., Swanson-Hysell, N.L., Louzada, K.L., Garrick-Bethell, I., and Poussart, P.M., Geology of Lonar crater, India, Geol. Soc. Am. Bull., 2010, vol. 122, nos. 1/2, pp. 109–126.

    Article  ADS  Google Scholar 

  22. Misra, S., Newsom, H.E., Shyam Prasad, M., Geissman, J.W., Dube, A., and Sengupta, D., Geochemical evidence of the impactor for Lonar crater, India: Solution to a century-old mystery, Meteoritics Planet. Sci., 2009, vol. 44, no. 7, pp. 1001–1018.

    Article  ADS  Google Scholar 

  23. Mittlefehldt, D.W., See, T.H., and Hörz, F., Dissemination and fractionation of projectile materials in the impact melts from Wabar crater, Saudi Arabia, Meteoritics, 1992, vol. 27, no. 4, pp. 361–370.

    Article  ADS  Google Scholar 

  24. Mittlefehldt, D.W., Hörz, F., See, T.H., Scott, E.R., and Mertzman, S.A., Geochemistry of target rocks, impact-melt particles, and metallic spherules from Meteor Crater, Arizona: Empirical evidence on the impact process, in Large Meteorite Impacts III, Boulder, CO: Geol. Soc. Am., 2005, vol. 384, pp. 367–390.

    Google Scholar 

  25. Mougel, B., Moynier, F., Koeberl, C., Wielandt, D., and Bizzarro, M., Identification of a meteoritic component using chromium isotopic composition of impact rocks from the Lonar impact structure, India, Meteoritics Planet. Sci., 2019, vol. 54, no. 10, pp. 2592–2599.

    Article  ADS  Google Scholar 

  26. Murali, A.V., Zolensky, M.E., and Blanchard, D.P., Tektite-like bodies at Lonar crater, India: Implications for the origin of tektites, J. Geophys. Res: Solid Earth, 1987, vol. 92, no. B4, pp. E729–E735.

    Article  ADS  Google Scholar 

  27. Nayak, V.K., Maskelynite from the Indian impact crater at Lonar, J. Geol. Soc. India, 1993, vol. 41, no. 4, pp. 307–312.

    Google Scholar 

  28. Nayak, B. and Meyer, F.M., Tetrataenite in terrestrial rock, Am. Mineralogist, 2015, vol. 100, no. 1, pp. 209–214.

    Article  ADS  Google Scholar 

  29. Novgorodova, M.I., Crystal chemistry of native metals and natural intermetallic compounds, Itogi Nauki Tekh. Ser. Kristallokhim., 1994, vol. 29, p. 153.

    Google Scholar 

  30. Osae, S., Misra, S., Koeberl, C., Sengupta, D., and Ghosh, S., Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: petrography and geochemistry, Meteoritics Planet. Sci., 2005, vol. 40, nos. 9/10, pp. 1473–1492.

    Article  ADS  Google Scholar 

  31. Pal, P.C. and Ramana, C.V., Lonar lake—volcanic crater or astrobleme, CEG Bulletin, 1972, pp. 114–121.

    Google Scholar 

  32. Palme, H., Grieve, R.A.F., and Wolf, R., Identification of the projectile at the Brent crater, and further considerations of projectile types at terrestrial craters, Geochim. Cosmochim. Acta, 1981, vol. 45, no. 12, pp. 2417–2424.

    Article  ADS  Google Scholar 

  33. Pecherskii, D.M., Markov, G.P., and Tsel’movich, V.A., Comparison of magnetic minerals in meteorites and sediments, Dvenadtsataya Mezhdunarodnaya konferentsiya “Fiziko-khimicheskie i petrofizicheskie issledovaniya v naukakh o Zemle” (12th Int. Conf. “Physical-Chemical and Petrophysical Research in the Earth Sciences”), Moscow–Borok, October 3–6, 2011, pp. 278–281.

  34. Pechersky, D.M., Markov, G.P., and Tsel’movich, V.A., Pure iron and other magnetic minerals in meteorites, Sol. Syst. Res., 2015, vol. 49, no. 1, pp. 61–71.

    Article  ADS  Google Scholar 

  35. Ray, D., Upadhyay, D., Misra, S., Newsom, H.E., and Ghosh, S., New insights on petrography and geochemistry of impactites from the Lonar crater, India, Meteoritics Planet. Sci., 2017, vol. 52, no. 8, pp. 1577–1599.

    Article  ADS  Google Scholar 

  36. Reid, A.M., Park, F.R., and Cohen, A.J., Synthetic metallic spherules in a Philippine tektite, Geochim. Cosmochim. Acta, 1964, vol. 28, no. 6, pp. 1004–1010.

    Article  ADS  Google Scholar 

  37. Saltykovskii, A.Ya., Tsel’movich, V.A., Baiaraa, T., Nikitin, A.N., Ivankina, T.I., Komatsu, Dzh., and Ormoo, Yu., Impact crater and composition of cosmic matter in the Early Paleozoic structural zone of Southern Mongolia, Dvenadtsataya Mezhdunarodnaya konferentsiya “Fiziko-khimicheskie i petrofizicheskie issledovaniya v naukakh o Zemle” (12th Int. Conf. “Physical-Chemical and Petrophysical Research in the Earth Sciences”), Moscow–Borok, October 3–6, 2011, pp. 298–302.

  38. Schmieder, M. and Kring, D.A., Earth’s impact events through geologic time: A list of recommended ages for terrestrial impact structures and deposits, Astrobiology, 2020, vol. 20, no. 1, pp. 91–141.

    Article  ADS  Google Scholar 

  39. Schulz, T., Luguet, A., Wegner, W., van Acken, D., and Koeberl, C., Target rocks, impact glasses, and melt rocks from the Lonar crater, India: highly siderophile element systematic and Sr-Nd-Os isotopic signatures, Meteoritics Planet. Sci., 2016, vol. 51, no. 7, pp. 1323–1339.

    Article  ADS  Google Scholar 

  40. Son, T.H. and Koeberl, C., Chemical variation in Lonar impact glasses and impactites, GFF, 2007, vol. 129, no. 2, pp. 161–176.

    Article  Google Scholar 

  41. Subrahmanyam, B., Lonar crater, India: A crypto-volcanic origin, Geol. Soc. India, 1985, vol. 26, no. 5, pp. 326–335.

    Google Scholar 

  42. Thorpe, A.N. and Senftle, F.E., Submicroscopic spherules and color of tektites, Geochim. Cosmochim. Acta, 1964, vol. 28, no. 6, pp. 981–994.

    Article  ADS  Google Scholar 

  43. Trieman, A.H., Lindstrom, D.J., Schwandt, C.S., Franchi, I.A., and Morgan, M.L., A “mesosiderite” rock from northern Siberia, Russia: Not a meteorite, Meteoritics Planet. Sci., 2002, vol. 37, no. S12, pp. B13–B22.

    ADS  Google Scholar 

  44. Welten, K.C., Concentrations of siderophile elements in nonmagnetic fractions of Antarctic H- and L-chondrites: A quantitative approach on weathering effects, Meteoritics Planet. Sci., 1999, vol. 34, no. 2, pp. 259–270.

    Article  ADS  Google Scholar 

  45. Yakovlev, O.I., Dikov, Yu.P., Gerasimov, M.V., Wlotzka, F., and Huth, J., Experimental investigation of factors controlling the composition of glasses from the lunar regolith, Geochem. Int., 2003, vol. 41, no. 5, pp. 417–430.

    Google Scholar 

  46. Zanda, B., Hewins, R.H., Bourot-Denise, M., Bland, P.A., and Albarede, F., Formation of solar nebula reservoirs by mixing chondritic components, Earth Planet. Sci. Lett., 2006, vol. 248, nos. 3–4, pp. 650–660.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to O.I. Yakovlev for consultations.

Funding

The work was carried out at the expense of the state budget under the state order of the Geochemical Institute of the Russian Academy of Sciences within the framework of the topic “New integrated approaches to the fundamental problem of studying the chemical composition, transformation and migration of nanoparticles and easily mobile forms of elements in the environment.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Gornostaeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gornostaeva, T.A., Kartashov, P.M., Mokhov, A.V. et al. Native Nickel–Iron Metals from Lonar Crater Impactites (India) and Regolith of the Moon. Sol Syst Res 57, 295–306 (2023). https://doi.org/10.1134/S0038094623040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623040032

Keywords:

Navigation