Skip to main content
Log in

Generation of Tsunami Waves During the Fall of 10-km Asteroids into the Ocean

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract—

The results of numerical simulation of the generation and the initial stage of tsunami wave propagation during the impacts of asteroids with sizes of about 10 km into an ocean with a depth of 1 to 6 km are presented. The calculations obtained the amplitudes and wavelengths at a distance of 2000 km from the impact point. Approximate formulas are given that make it possible to estimate the amplitudes and wavelengths with an accuracy of 10–20%. The conclusion is confirmed that when an asteroid with a size of about ten kilometers falls into the ocean, long tsunami waves are generated, similar to those that occur during earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aditia, D. and Pudjaprasetya, S.R., Numerical simulation of wave runup and overtopping for short and long waves using staggered grid variational Boussinesq, J. Earthquake Tsunami, 2020, vol. 14, no. 5, id. 2040005.

  2. Artemieva, N.A. and Shuvalov, V.V., Shock metamorphism on the ocean floor (numerical simulations), Deep Sea Res., Part II, 2002, vol. 49, pp. 959–968.

    Article  ADS  Google Scholar 

  3. Crawford, D.A. and Mader, C.L., Modeling asteroid impact and tsunami, Sci. Tsunami Hazards, 1998, vol. 16, pp. 21–30.

    Google Scholar 

  4. Gault, D.E., Impact cratering, in A Primer in Lunar Geology, Greely, R. and Schultz, P.H., Eds., Moffiett Field, CA: NASA Ames Research Center, 1974, pp. 137–175.

    Google Scholar 

  5. Hills, J.G., Nemchinov, I.V., Popov, S.P., and Teterev, A.V., Tsunami generation by small asteroid impacts, in Hazards from Comets and Asteroids, Gehrels, T., Ed., Tucson: Univ. Arizona Press, 1994, pp. 779–789.

    Google Scholar 

  6. Koeberl, K. and Ivanov, B., Asteroid impact effects on snowball Earth, Meteorit. Planet. Sci., 2019, vol. 54, no. 10, pp. 2273–2285.

    Article  ADS  Google Scholar 

  7. Korycansky, D.G. and Lynett, P.J., Offshore breaking of impact tsunami: the Van Dorn effect revisited, Geophys. Res. Lett., 2005, vol. 32, id. L10608.

  8. Kuznetsov, N.M., Termodinamicheskie funktsii i udarnye adiabaty vozdukha pri vysokikh temperaturakh (Thermodynamic Functions and Shock Adiabats of Air at High Temperatures), Moscow: Mashinostroenie, 1965.

  9. Lobkovsky, L., Mazova, R., Remizov, I., and Baranova, N., Local tsunami run-up depending on initial localization of the landslide body at submarine slope, Landslides, 2021, vol. 18, pp. 897–907.

    Article  Google Scholar 

  10. Melosh, H.J., Impact-generated tsunamis: An overrated hazard, 34th Proc. Lunar and Planet. Sci. Conf., 2003, abs. no. 2013.

  11. Melosh, H.J., A hydrocode equation of state for SiO2, Meteorit. Planet. Sci., 2007, vol. 42, no. 12, pp. 2079–2098.

    Article  ADS  Google Scholar 

  12. Polyanin, A.D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki (Handbook of Linear Equations of Mathematical Physics), Moscow: Nauka, 2001.

  13. Potter, R.W.K., Kring, D.A., Collins, G.S., Kiefer, W.S., and McGovern, P.J., Numerical modeling of the formation and structure of the Orientale impact basin, J. Geophys. Res.: Planets, 2013, vol. 118, no. 5, pp. 963–979.

    Article  ADS  Google Scholar 

  14. Robertson, D.K. and Gisler, G.R., Near and far-field hazards of asteroid impacts in oceans, Acta Astronaut., 2019, vol. 156, pp. 262–277.

    Article  ADS  Google Scholar 

  15. Shuvalov, V.V., Multi-dimensional hydrodynamic code SOVA for interfacial flows: Application to thermal layer effect, Shock Waves, 1999, vol. 9, no. 6, pp. 381–390.

    Article  ADS  Google Scholar 

  16. Shuvalov, V.V., Release of matter into the atmosphere during the fall of ten-kilometer asteroids into the ocean, Sol. Syst. Res., 2021, vol. 55, no. 6, pp. 97–105.

    Article  ADS  MathSciNet  Google Scholar 

  17. Shuvalov, V. and Dypvik, H., Ejecta formation and crater development of the Mjolnir impact, Meteorit. Planet. Sci., 2004, vol. 39, no. 3, pp. 467–479.

    Article  ADS  Google Scholar 

  18. Shuvalov, V. V. and Trubetskaya, I.A., Numerical modeling of marine impacts, Sol. Syst. Res., 2002, vol. 36, pp. 417–430.

    Article  ADS  Google Scholar 

  19. Thompson, S.L. and Lauson, H.S., Improvements in the Chart D radiation-hydrodynamic CODE III: Revised analytic equations of state, Report SC-RR-71 0714, Albuquerque: Sandia Natl. Lab., 1972.

  20. Tillotson, J.H., Metallic equations of state for hypervelocity impact, General Atomic Report GA-3216, San Diego, CA: General Atomic, 1962.

  21. Toon, O.B., Zahnle, K., Morrison, D., Turco, R.P., and Covey, C., Environmental perturbations caused by the impacts of asteroids and comets, Rev. Geophys., 1997, vol. 35, pp. 41–78.

    Article  ADS  Google Scholar 

  22. Van Dorn, W., LeMehaute, B., and Li-San, H., Handbook of explosion-generated, water waves, Report TC-130, Pasadena, CA: Tetra Tech, 1968.

  23. Ward, S.N. and Asphaug, E., Large waves caused by oceanic impacts of meteorites, Tsunami and Nonlinear Waves, Kunda, A., Ed., New York: Springer, 2000, pp. 235–260.

    Google Scholar 

  24. Weiss, R., Wunnemann, K., and Bahlburg, H., Numerical modelling of generation, propagation and run-up of tsunamis caused by oceanic impacts: Model strategy and technical solutions, Geophys. J. Int., 2006, vol. 167, pp. 77–88.

    Article  ADS  Google Scholar 

  25. Wünnemann, K. and Ivanov, B.A., Numerical modeling of the impact crater depth-diameter dependence in an acoustically fluidized target, Planet. Space Sci., 2003, vol. 51, pp. 831–845.

    Article  ADS  Google Scholar 

  26. Wünnemann, K., Weiss, R., and Hofmann, H., Characteristics of oceanic impact-induced large water waves – Re-evaluation of the tsunami hazard, Meteorit. Planet. Sci., 2007, vol. 42, pp. 1893–1903.

    Article  ADS  Google Scholar 

  27. Wünnemann, K., Collins, G.S., and Weiss, R., Impact of a cosmic body into Earth’s ocean and the generation of large tsunami waves: insight from numerical modeling, Rev. Geophys., 2010, vol. 48, no. 4, id. RG4006.

Download references

ACKNOWLEDGMENTS

The author is grateful to B.A. Ivanov and two other anonymous reviewers for careful reading of the article and valuable comments.

Funding

The work was carried out within the framework of the state task of the IDG RAS no. 1021052706222-8-1.5.4 (FMWN-2022-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shuvalov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvalov, V.V. Generation of Tsunami Waves During the Fall of 10-km Asteroids into the Ocean. Sol Syst Res 56, 271–277 (2022). https://doi.org/10.1134/S0038094622030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094622030066

Keywords:

Navigation