Skip to main content
Log in

Relationship Between the H5 Chondrite Composition, Structure and Mechanical Properties from the Example of NWA 12370 and Pultusk

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract—

The peculiarities of the composition and internal structure of chondrite NWA 12370, petrological type H5 S1 W1, were studied by means of Raman spectroscopy, XRF, and electronic sounding. The dependence of the mechanical properties of chondrite on the external hydrostatic pressure was studied by means of ultrasonic waves and static methods. This meteorite is a fragment of stone rain from the debris of the inner part of a large asteroid, about 200 km in size. We compared the mechanical characteristics obtained with those of the well-studied Pultusk chondrite of the same type, impact breccia H4/H5 S2 W1. At the early stage of the Solar System, such planetesimals made a significant contribution to the geochemical evolution of the terrestrial planets. Therefore, understanding the peculiarities of the relationship between the H chondrite’s internal structure and elastic properties is essential for assessing their contribution to the crust and upper mantle composition of the Earth and Moon and clarifying the conditions for the formation of the redox potential of the planetary interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ballhaus, C. and Ellis, D.J., Mobility of core melts during Earth’s accretion, Earth Planet. Sci. Lett., 1996, vol. 143, pp. 137–145.

    Article  ADS  Google Scholar 

  2. Bruhn, D., Groebner, N., and Kohlstedt, D.L., An interconnected network of core-forming melts produced by shear deformation, Nature, 2000, vol. 403, pp. 883–886.

    Article  ADS  Google Scholar 

  3. Burkhardt, C., Dauphas, N., Tang, H., Fischer-Goedde, M., Qin, L., Chen, J., Rout, S., Pack, A., Heck, P., and Papanastassiou, D., In search of the Earth-forming reservoir: Mineralogical, chemical, and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites, Meteorit. Planet. Sci., 2017, vol. 52, no. 5, pp. 807–826.

    Article  ADS  Google Scholar 

  4. Cassiamani, G., Kayzre, J.D., Ferro, R., Klotz, U.E., Locaze, J., and Wollants, P., Critical evaluation of the Fe–Ni, Fe–Ti, and Fe–Ni–Ti alloy systems, Intermetallic, 2006, vol. 14, pp. 1312–1325.

    Article  Google Scholar 

  5. Ghosh, A., Weidenschilling, S.J., and McSween, H.Y., Importance of the accretion process in asteroid thermal evolution: 6 Hebe as an example, Meteorit. Planet. Sci., 2003, vol. 38, pp. 711–724.

    Article  ADS  Google Scholar 

  6. Groebner, N. and Kohlstedt, D.L., Deformation-induced metal melt networks in silicates: Implications for core mantle interactions in planetary bodies, Earth Planet. Sci. Lett., 2006, vol. 245, pp. 571–580.

    Article  ADS  Google Scholar 

  7. Jarosewich, E., Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses, Meteorit. Planet. Sci., 1990, vol. 25, pp. 323–337.

    Google Scholar 

  8. Henke, S., Gail, H.-P., Trieloff, M., and Schwarz, W.H., Thermal evolution model for the H chondrite asteroid-instantaneous formation versus protracted accretion, Icarus, 2013, vol. 226, pp. 212–228.

    Article  ADS  Google Scholar 

  9. Hogan, J.D., Kimberley, J., Hazeli, K., Plescia, J., and Ramesh, K.T., Dynamic behavior of an ordinary chondrite: The effects of microstructure on strength, failure and fragmentation, Icarus, 2015, vol. 260, p. 308–319.

    Article  ADS  Google Scholar 

  10. Huang, E., Chen, C.H., Huang, T., Lin, E.H., and Ji-An, X., Raman spectroscopic characteristics of Mg-Fe-Ca pyroxene, Am. Mineral., 2000, no. 85, pp. 473–479.

  11. Hutchison, R., Meteorites: A Petrologic, Chemical and Isotopic Synthesis, Cambridge: Cambridge Univ. Press, 2004.

    Google Scholar 

  12. Friedrich, J.M., Weisberg, M.K., and Rivers, M.L., Multiple impact events recorded in the NWA 7298 H chondrite breccias and the dynamical evolution of an ordinary chondrite asteroid, Earth Planet. Sci. Lett., 2014, no. 394, pp. 13–19.

  13. Krzesinska, A., Contribution of early impact events to metal-silicate separation, thermal annealing, and volatile redistribution: Evidence in the Pultusk H chondrite, Meteorit. Planet. Sci., 2017, vol. 52, pp. 2305–2321.

    ADS  Google Scholar 

  14. Krzesinska, A. and Fritz, J., Weakly shocked and deformed CM microxenoliths in the Pultusk H chondrite, Meteorit. Planet. Sci., 2014, vol. 49, pp. 595–610.

    Article  ADS  Google Scholar 

  15. Kuebler, K.E., Jolliff, B.L., Wang, A., and Haskin, L.A., Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 6201–6222.

    Article  ADS  Google Scholar 

  16. Manecki, A., Mineralogical and petrological study of the Pultusk meteorite, Mineral. Trans., 1972, vol. 40, pp. 53–65.

    Google Scholar 

  17. Medvedev, R.V., Gorbatsevich, F.F., and Zotkin, I.T., Determination of the physical properties of stony meteorites applied to the study of their destruction processes, Meteoritika, 1985, vol. 44, pp. 105–110.

    ADS  Google Scholar 

  18. Lorenz, C.A., The Meteoritical Bulletin no. 108, 2020. www.lpi.usra.edu/meteor/metbull.php?sea=NWA+ 12370&sfor=names&ants=&nwas=&falls=&valids= &stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=All&mblist=All&rect=&phot=&strewn=&snew=0&pnt=Normal%20table& code=69306.

  19. Miyamoto, M., Fujii, N., and Takeda, H., Ordinary chondrite parent body: An internal heating model, Lunar Planet. Sci., 1981, vol. 12B, pp. 1145–1152.

    ADS  Google Scholar 

  20. Mouri, T. and Enami, M., Raman spectroscopic study of olivine-group minerals, J. Mineral. Petrol. Sci., 2008, no. 103, pp. 100–104.

  21. Pouchou, J.L. and Pichoir, F., Possibilites d’analyse en profondeur a la microsonde electronique, J. Electron Spectrosc. Relat. Phenom., 1984, vol. 9, p. 99.

    Google Scholar 

  22. Rzhevskii, V.V. and Novik, G.Ya., Osnovy fiziki gornykh porod (Fundamentals of Rock Physics), Moscow: Nedra, 1978, 3rd ed.

  23. Stoffler, D., Keil, K., and Scott, E.R.D., Shock metamorphism in ordinary chondrites, Geochim. Cosmochim. Acta, 1991, no. 55, pp. 3845–3867.

  24. Tomkins, A.G., Weinberg, R.F., Sheafer, B.F., and Langendam, A., Disequilibrium melting and melt migration driven by impacts: implications for rapid planetesimal core formation, Geochim. Cosmochim. Acta, 2013, vol. 100, pp. 41–59.

    Article  ADS  Google Scholar 

  25. Voropaev, S.A., Kocherov, A.V., Lorenz, C.A., Korochantsev, A.V., Dushenko N.V., Kuzina, D.M., Nugmanov, I.I., and Jianguo, Y., Features in constructing a certificate of strength of extraterrestrial material by the example of the Chelyabinsk meteorite, Dokl. Phys., 2017, vol. 62, no. 10, pp. 486–489.

    Article  ADS  Google Scholar 

  26. Voropaev, S.A., Jianguo, Y., and Barriot J.-P., Prolate body disruption by Earth at near flyby: Possible scenarios, Sol. Syst. Res., 2020, vol. 54, no. 2, pp. 155–166.

    Article  ADS  Google Scholar 

  27. Wasson, J.T. and Kallemeyn, G.W., Compositions of chondrites, Philos. Trans. R. Soc. London, A, 1988, vol. 325, p. 535.

    Article  ADS  Google Scholar 

  28. Wlotzka, F., A weathering scale for the ordinary chondrites, Meteorit. Planet. Sci., 1993. vol. 28, p. 460.

    Google Scholar 

  29. Yoshino, T., Walter, M.J., and Katsura, T., Core formation in planetesimals triggered by permeable flow, Nature, 2003, vol. 422, pp. 154–157.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Corresponding Member, Russian Academy of Sciences, F.V. Kaminsky for the critical review of the text and comments, which helped significantly improve the presentation of the results.

Funding

The study was supported by a grant from the Russian Science Foundation no. 21-17-00120, https://rscf.ru/project/21-17-00120/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Voropaev.

Additional information

Translated by M. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voropaev, S.A., Nugmanov, I.I., Dushenko, N.V. et al. Relationship Between the H5 Chondrite Composition, Structure and Mechanical Properties from the Example of NWA 12370 and Pultusk. Sol Syst Res 55, 409–419 (2021). https://doi.org/10.1134/S0038094621050087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094621050087

Keywords:

Navigation