Skip to main content
Log in

Simulation of the Structure of Dust Fractal Clusters in Protoplanetary Gas–Dust Disks

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract—

Modern models of the formation of planetary systems, built taking into account the available data on gas and dust protoplanetary disks, include ever more sophisticated methods of computer modeling of various processes, among which an important role belongs to the study of the interaction of dust particles in the disk, occurring on scales from fractions of a millimeter to tens or more centimeters. The important initial conditions for their description are the parameters of the distribution of particles by composition and size. One of the urgent problems is the construction of models of dust clusters formed in protoplanetary disks, taking into account the existing cosmochemical and physical limitations. In this work, our main focus is on the methodological issues of modeling the internal structure of dusty fractal clusters on the basis of theoretical approaches in which the previously proposed effective method of permeable particles is used. An approach has been implemented that can take into account the polydispersity and heterogeneity of the composition of the solid-state component of the protoplanetary disk. This technique uses the following input parameters of the model: ranges of the initial particle size distribution, fractal dimension of the clusters formed, mass fractions of ice and refractory particles. The author has developed software for the numerical implementation of the corresponding model problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Akimkin, V.V., Ivlev, A.V., and Caselli, P., Inhibited coagulation of micron-size dust due to the electrostatic barrier, Astrophys. J., 2020, vol. 889, art. id. 64.

  2. Brisset, J., Miletich, T., Metzger, J., Rascon, A., Dove, A., and Colwell, J., Multi-particle collisions in microgravity coefficient of restitution and sticking threshold for systems of mm-sized particles, Astron. Astrophys., 2019, vol. 631, art. id. A35.

  3. Crownover, R.M., Introduction to Fractals and Chaos, Burlington, MA: Jones & Bartlett, 1995.

    Google Scholar 

  4. Dominik, C. and Tielens, A.G.G.M., Resistance to rolling in the adhesive contact of two elastic spheres, Philos. Mag. A, 1995, vol. 72, pp. 783–803.

    Article  ADS  Google Scholar 

  5. Ivlev, A.V., Akimkin, V.V., and Caselli, P., Ionization and dust charging in protoplanetary disks, Astrophys. J., 2016, vol. 833, art. id. 92.

  6. Ishihara, T., Kobayashi, N., Enohata, K., Umemura, M., and Shiraishi, K., Dust coagulation regulated by turbulent clustering in protoplanetary disks, Astrophys. J., 2018, vol. 854, art. id. 81. https://doi.org/10.3847/1538-4357/aaa976

  7. Johansen, A., Blum, J., Tanaka, H., Ormel, C., Bizzarro, M., and Rickman, H., The multifaceted planetesimal formation process, in Protostars and Planets VI, Beuther, H., Klessen, R.S., Dullemond, C.P., and Henning, T., Eds., Tucson: Univ. Arizona Press, 2014, pp. 547–570.

    Google Scholar 

  8. Kataoka, A., Tanaka, H., Okuzumi, S., and Wada, K., Fluffy dust forms icy planetesimals by static compression, Astron. Astrophys., 2013, vol. 557, art. id. L4.

  9. Kolesnichenko, A.V. and Marov, M.Ya., Modeling of aggregation of fractal dust clusters in a laminar protoplanetary disk, Sol. Syst. Res., 2019a, vol. 47, no. 2, pp. 80–98.

    Article  ADS  Google Scholar 

  10. Kolesnichenko, A.V. and Marov, M.Ya., Streaming instability in the gas-dust medium of the protoplanetary disc and the formation of fractal dust clusters, Sol. Syst. Res., 2019b, vol. 53, no. 3, pp. 181–198.

    Article  ADS  Google Scholar 

  11. Marov, M.Ya., The formation and evolution of the Solar System, Oxford Research Encyclopedia of Planetary Science, 2018. https://doi.org/10.1093/acrefore/9780190647926.013.2

    Book  Google Scholar 

  12. Marov, M.Ya. and Rusol, A.V., A model for the impact interaction of bodies in a gas-dust protoplanetary disk, Dokl. Phys., 2011, vol. 56, no. 12, pp. 597–601.

    Article  Google Scholar 

  13. Marov, M.Ya. and Rusol, A.V., Gas-dust protoplanetary disc: Modeling primordial dusty clusters evolution, J. Pure Appl. Phys., 2015a, vol. 3, pp. 16–23.

    Google Scholar 

  14. Marov, M.Ya. and Rusol, A.V., Gas-dust protoplanetary disc: Modeling collisional interaction of primordial bodies, J. Modern Phys., 2015b, vol. 6, p. 181.

    Article  ADS  Google Scholar 

  15. Marov, M.Ya. and Rusol, A.V., Estimating the parameters of collisions between fractal dust clusters in a gas-dust protoplanetary disk, Astron. Lett., 2018, vol. 44, no. 7, pp. 474–481.

    Article  ADS  Google Scholar 

  16. Marov, M.Ya., Kolesnichenko, A.V., Makalkin, A.B., Dorofeeva, V.A., Ziglina, I.N., and Chernov, A.V., From a protosolar cloud to a planetary system: A model of the evolution of a gas-dust disk, in Problemy zarozhdeniya i evolyutsii biosfery (Problems of the Origin and Evolution of the Biosphere), Galimov, E.M., Ed., Moscow: LIBROKOM/URSS, 2008, vol. 1, pp. 223–274.

  17. Marov, M.Ya., Kolesnichenko, A.V., Makalkin, A.B., Dorofeeva, V.A., Ziglina, I.N., and Chernov, A.V., Modeling the formation and early evolution of protoplanetary bodies, in Problemy zarozhdeniya i evolyutsii biosfery (Problems of the Origin and Evolution of the Biosphere), Galimov, E.M., Ed., Moscow: URSS, 2013, vol. 2, pp. 13–33.

  18. Marov, M.Ya., Rusol, A.V., and Makalkin, A.B., Modeling the fragmentation of dust-ice clusters on the snowline in protoplanetary disks, Sol. Syst. Res., 2021, vol. 55, no. 3, pp. 238–258.

  19. Matthews, L.S. and Hyde, T.W., Effects of the charge-dipole interaction on the coagulation of fractal aggregates, in IEEE Trans. Plasma Sci., 2004, vol. 32, pp. 586–593.

    Article  ADS  Google Scholar 

  20. Morozov, A.D., Vvedenie v teoriyu fraktalov (Introduction to the Theory of Fractals), Moscow: Inst. Komp. Issled., 2002.

  21. Perry, J.D., Gostomski, E., Matthews, L.S., and Hyde, T.W., The influence of monomer shape on aggregate morphologies, Astron. Astrophys., 2012, vol. 539, art. id. A99.

  22. Ringl, C., Bringa, E.M., Bertoldi, D.S., and Urbassek, H.M., Collisions of porous clusters a granular-mechanics study of compaction and fragmentation, Astrophys. J., 2012, vol. 752, pp. 151–164.

    Article  ADS  Google Scholar 

  23. Safronov, V.S., Evolyutsiya doplanetnogo oblaka i obrazovanie Zemli i planet (Evolution of the Protoplanetary Cloud and the Formation of the Earth and Planets), Moscow: Nauka, 1969.

  24. Safronov, V.S., Evolution of the dust component of the circumsolar protoplanetary disk, Astron. Vestn., 1987, vol. 21, no. 4, pp. 216–220.

    ADS  Google Scholar 

  25. Smirnov, B.M., Fizika fraktal’nykh klasterov (Physics of Fractal Clusters), Moscow: Nauka, 1991.

  26. Tazaki, R. and Nomura, H., Outward motion of porous dust aggregates by stellar radiation pressure in protoplanetary disks, Astrophys. J., 2015, vol. 799, art. id. 119. https://doi.org/10.1088/0004-637X/799/2/119

  27. Tazaki, R., Tanaka, H., Okuzumi, S., Kataoka, A., and Nomura, H., Light scattering by fractal dust aggregates, Astrophys. J., 2016, vol. 823, art. id. 70. https://doi.org/10.3847/0004-637X/823/2/70

  28. Tielens, A.G.G.M., in Chemical and physical properties of interstellar dust, in The Spectral Energy Distribution of Galaxies Proceedings IAU Symp. No. 284, Tuffs, R.J. and Popescu, C.C., Eds., Cambridge: Cambridge Univ. Press, 2011, pp. 72–81.

  29. Tielens, A.G.G.M. and Allamandola, L.J., Evolution of interstellar dust, in Physical Processes in Interstellar Clouds, Morfill, G.E. and Sholer, M., Eds., Dordrecht: Reidel, 1987, pp. 333–376.

    Google Scholar 

  30. Tielens, A.G.G.M., Waters, L.B.F.M., and Bernatowicz, T.J., Origin and evolution of dust in circumstellar and interstellar environments, in Chondrites and the Protoplanetary Disk. ASP Conf. Series, Krot, A.N., Scott, E.R.D., and Reipurth, B., Eds., San Francisco: Astron. Soc. of the Pacific, 2005, vol. 341, pp. 605–631.

  31. Umstätter, Ph. and Urbassek, H., Fragmentation and energy dissipation in collisions of polydisperse granular clusters, Astron. Astrophys., 2020, vol. 633, art. id. A24. https://doi.org/10.1051/0004-6361/201936527

  32. Wada, K., Tanaka, H., Suyama, T., Kimura, H., and Yamamoto, T., Numerical simulation of dust aggregate collisions. I. Compression and disruption of two-dimensional aggregates, Astrophys. J., 2007, vol. 661, pp. 320–313.

    Article  ADS  Google Scholar 

  33. Wada, K., Tanaka, H., Suyama, T., Kimura, H., and Yamamoto, T., Numerical simulation of dust aggregate collisions. II. compression and disruption of three-dimensional aggregates in head-on collisions, Astrophys. J., 2008, vol. 677, pp. 1296–1308.

    Article  ADS  Google Scholar 

  34. Wada, K., Tanaka, H., Suyama, T., Kimura, H., and Yamamoto, T., Collisional growth conditions for dust aggregates, Astrophys. J., 2009a, vol. 702, pp. 1490–1501.

    Article  ADS  Google Scholar 

  35. Wada, K., Tanaka, H., Suyama, T., Kimura, H., and Yamamoto, T., Growth and disruption of dust aggregates by collisions, in COSMIC DUST–NEAR AND FAR ASP Conf. Series, Henning, Th., Grun, E., and Steinacker, J., Eds., 2009b, vol. 414, pp. 347–355.

    Google Scholar 

  36. Wright, E.L., Long-wavelengths absorption by fractal dust grains, Astrophys. J., 1987, vol. 320, pp. 818–824.

    Article  ADS  Google Scholar 

  37. Wright, E.L., Fractal dust grains around R Coronae Borealis stars, Astrophys. J., 1989, vol. 346, pp. L89–L91.

    Article  ADS  Google Scholar 

  38. Youdin, A.N. and Goodman, J., Streaming instabilities in protoplanetary disks, Astrophys. J., 2005, vol. 620, pp. 459–469.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Academician M.Ya. Marov for scientific guidance of work on planetary cosmogony, within the framework of which research on the problems of simulation of fractal dust clusters was carried out, and for a discussion of the results. The author is grateful to A.B. Makalkin for fruitful discussions of the evolution of the solid-state component in protoplanetary disks and suggestions that significantly improved this article. The author is grateful to the reviewers for their valuable comments and suggestions, which improved the content of the article.

Funding

The author is grateful to the Government of the Russian Federation and the Ministries of Science and Higher Education of the Russian Federation for their support of this work under the grant 075-15-2020-780 (N13.1902.21.0039). Part of the calculations related to the study of processes in the early Solar System, was carried out in accordance with the plans for fundamental research determined by the state task of the Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rusol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusol, A.V. Simulation of the Structure of Dust Fractal Clusters in Protoplanetary Gas–Dust Disks. Sol Syst Res 55, 227–237 (2021). https://doi.org/10.1134/S0038094621030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094621030060

Keywords:

Navigation