Skip to main content
Log in

Dynamic Structure of Near-Earth Orbital Space in the 1 : 2 Resonance Region with the Speed of Earth’s Rotation

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The paper presents the results of a study of the dynamic structure of near-Earth orbital space in the 1 : 2 resonance region with Earth’s rotation speed. The results of an extensive numerical-analytical experiment to study the orbital evolution of objects moving in the semimajor axis range from 26 550 to 26 570 km, with inclinations from 0° to 180°. In this region, the zones of action of the five components of the orbital resonance and aspidal–nodal secular resonances of low orders are revealed. The distribution maps of the revealed resonances are constructed. The dynamic structure of the orbital space was also investigated using the fast Lyapunov characteristic of MEGNO and represented by a MEGNO map of the region in the section by the plane (inclination of the orbit, major axis). It is shown that a feature of the dynamic evolution of most of the studied orbits is randomness arising under the influence of overlapping resonances of various types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. The mechanism, effect, Lidov–Kozai resonance (in Russian and Japanese literature), Kozai‒Lidov, or simply Kozai (in European and American literature) are examined in detail in monographs (Shevchenko, 2016; Ito and Ohtsuka, 2019). In the study of satellite motion while taking into account the influence of the Moon, the Sun and the off-centerness of the Earth’s gravitational field, the term “Lidov–Kozai resonance” for resonance \(\dot {\omega } = 0\) was introduced in (Breiter, 2001b).

REFERENCES

  1. Aleksandrova, A.G., Bordovitsyna, T.V., and Tomilova, I.V., Lidov-Kozai resonance and its influence on the orbital evolution of near-Earth space objects, in M.L. Lidov—yarkoe imya v kosmicheskoi nauke (M.L. Lidov—Bright Name in Space Science), Vashkov’yak, M.A., Ed., Moscow: Inst. Prikl. Matem. im. M.V. Keldysha, 2016, pp. 49–66.

  2. Aleksandrova, A.G., Bordovitsyna, T.V., and Chuvashov, I.N., Numerical modeling in problems of near-Earth object dynamics, Russ. Phys. J., 2017, vol. 60, no. 1, pp. 80–89.

    Article  Google Scholar 

  3. Aleksandrova, A.G., Bordovitsyna, T.V., and Tomilova, I.V., Special features of the Joint Influence of low-order secular resonances and light pressure on the motion of near-Earth Space objects, Russ. Phys. J., 2018, vol. 61, no. 4, pp. 687–693.

    Article  Google Scholar 

  4. Allan, R.R., Resonance effects due to the longitude dependence of the gravitational field of a rotating primary, Planet. Space Sci., 1967a, vol. 15, pp. 53–76.

    Article  ADS  Google Scholar 

  5. Allan, R.R., Satellites resonance with the longitude dependent gravity. II. Effects involving the eccentricity, Planet. Space Sci., 1967b, vol. 15, pp. 1829–1845.

    Article  ADS  Google Scholar 

  6. Avdyushev, V.A., Gauss-Everhart integrator, Vychisl. Tekhnol., 2010, vol. 15, no. 4, pp. 31–47.

    MATH  Google Scholar 

  7. Bordovitsyna, T.V. and Avdyushev, V.A., Teoriya dvizheniya iskusstvennykh sputnikov Zemli. Analiticheskie i chislennye metody (The Theory of Motion of Artificial Earth Satellites: Analytical and Numerical Methods), Tomsk: Tomsk. Gos. Univ., 2007.

  8. Bordovitsyna, T.V., Aleksandrova, A.G., and Chuvashov, I.N., Complex of algorithms and software for researching chaoticity in the Earth’s artificial satellites dynamics, Izv. Vyssh. Uchebn. Zaved., Fiz., 2010, vol. 53, no. 8-2, pp. 14–21.

  9. Bordovitsyna, T.V., Tomilova, I.V., and Chuvashov, I.N., The effect of secular resonances on the long-term orbital evolution of uncontrollable objects on satellite radio navigation systems in the MEO region, Sol. Syst. Res., 2012, vol. 46, no. 5, pp. 329–340.

    Article  ADS  Google Scholar 

  10. Breiter, S., On the coupling of lunisolar resonances for Earth satellite orbits, Celest. Mech. Dyn. Astron., 2001a, vol. 80, pp. 1–20.

    Article  ADS  MathSciNet  Google Scholar 

  11. Breiter, S., Lunisolar resonances revisited, Celest. Mech. Dyn. Astron., 2001b, vol. 81, pp. 81–91.

    Article  ADS  MathSciNet  Google Scholar 

  12. Chao, C. and Gick, R., Long-term evolution of navigation satellite orbits, Adv. Space Res., 2004, vol. 34, pp. 1221–1226.

    Article  ADS  Google Scholar 

  13. Cincotta, P.M. and Simó, C., Simple tools to study global dynamics in non-axisymmetric galactic potentials–I, Astron. Astrophys. Suppl., 2000, vol. 147, pp. 205–228.

    Article  ADS  Google Scholar 

  14. Cincotta, P.M., Girdano, C.M., and Simó, C., Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits, Phys. D (Amsterdam), 2003.V. 182, pp. 151–178.

    Article  MathSciNet  Google Scholar 

  15. Cook, G.E., Luni-solar perturbations of the orbit of an Earth satellite, Geophys. J., 1962, vol. 6, no. 3, pp. 271–291.

    Article  ADS  Google Scholar 

  16. Daquin, J., Rosengren, A.J., Alessi, E.M., Deleflie, F., Valsecchi, G.B., and Rossi, A., The dynamical structure of the MEO region: long-term stability, chaos, and transport, Celest. Mech. Dyn. Astron., 2016, vol. 124, no. 4, pp. 335–336.

    Article  ADS  MathSciNet  Google Scholar 

  17. Ito, T. and Ohtsuka, K., The Lidov–Kozai oscillation and Hugo von Zeipel, Monogr. Environ. Earth Planets, 2019, vol. 7, no. 1, pp. 1–113.

    Article  ADS  Google Scholar 

  18. Kozai, Y., Secular perturbations of asteroids with high inclination and eccentricity, Astron. J., 1962, vol. 67, pp. 591–598.

    Article  ADS  MathSciNet  Google Scholar 

  19. Kuznetsov, E.D., Zakharova, P.E., Glamazda, D.V., Shagabutdinov, A.I., and Kudryavtsev, S.O., Light pressure effect on the orbital evolution of objects moving in the neighborhood of low-order resonances, Sol. Syst. Res., 2012, vol. 46, no. 6, pp. 442–449.

    Article  ADS  Google Scholar 

  20. Lidov, M.L., The evolution of artificial Earth satellites under gravitational perturbations from an external body, Iskusstv. Sputniki Zemli, 1961, no. 8, pp. 5–45.

  21. Murray, C.D. and Dermott, S.F., Solar System Dynamics, Cambridge: Cambridge Univ. Press, 1999.

    MATH  Google Scholar 

  22. Rosengren, A.J., Alessi, E.M., Rossi, A., and Valsecchi, G.B., Chaos in navigation satellite orbits caused by the perturbed motion of the Moon, Mon. Not. R. Astron. Soc., 2015, vol. 449, pp. 3522–3526.

    Article  ADS  Google Scholar 

  23. Rossi, A., Resonant dynamics of medium Earth orbits: space debris, Celest. Mech. Dyn. Astron., 2008, vol. 100, pp. 267–286.

    Article  ADS  MathSciNet  Google Scholar 

  24. Tomilova, I.V. and Bordovitsyna, T.V., Special features in the structure of resonant perturbations of uncontrollable objects of glonass and gps navigating systems. Influence on the orbital evolution, Russ. Phys. J., 2017, vol. 60, no. 4, pp. 693–700.

    Article  Google Scholar 

  25. Tomilova, I.V., Bordovitsyna, T.V., and Krasavin, D.S., Dynamical structure of the GLONASS and GPS orbital space: problem of disposal of retired objects, Sol. Syst. Res., 2018, vol. 52, no. 5, pp. 450–465.

    Article  ADS  Google Scholar 

  26. Tomilova, I.V., Blinkova, E.V., and Bordovitsyna, T.V., Features of the dynamics of objects moving in the neighborhood of the 1 : 3 resonance with the Earth’s rotation, Sol. Syst. Res., 2019, vol. 53, no. 5, pp. 1–15.

    Article  Google Scholar 

  27. Valk, S., Delsate, N., Lemaitre, A., and Carletti, T., Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator, Adv. Space Res., 2009, vol. 43, pp. 1509–1526.

    Article  ADS  Google Scholar 

  28. Vashkov’yak, M.A. and Teslenko, N.M., Mikhail L’vovich Lidov—bright name in space science, in M.L. Lidov—yarkoe imya v kosmicheskoi nauke (M.L. Lidov—Bright Name in Space Science), Vashkov’yak, M.A., Ed., Moscow: Inst. Prikl. Matem. im. M.V. Keldysha, 2016, pp. 9–38.

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-32-00735 mol_a “Study of the dynamics of near-Earth space objects under conditions of superposition of various types of resonances.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Tomilova, D. S. Krasavin or T. V. Bordovitsyna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomilova, I.V., Krasavin, D.S. & Bordovitsyna, T.V. Dynamic Structure of Near-Earth Orbital Space in the 1 : 2 Resonance Region with the Speed of Earth’s Rotation. Sol Syst Res 54, 307–317 (2020). https://doi.org/10.1134/S0038094620040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094620040085

Keywords:

Navigation