Skip to main content
Log in

Rényi Thermodynamics as a Mandatory Basis to Model the Evolution of a Protoplanetary GasDust Disk with a Fractal Structure

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

For the purpose of mathematical simulations of the formation processes for planetesimals in the Solar protoplanetary disk, statistical thermodynamics for nonextensive fractal systems was developed and its properties were determined on the basis of the Rényi parametric entropy taking account of fractal conceptions on the properties of disperse dust aggregates in the disk medium. It has been found that there is a close relationship between the Rényi thermodynamics of nonextensive systems on the one hand and the technique for obtaining fractal and multifractal dimensions based on geometry and stochastics on the other. It has been shown that temporal evolution of a closed system to the equilibrium state depends on a sign of the deformation parameter that is a measure of nonextensivity of a fractal system. Different scenarios for constructing fractal dimensions of various orders for fractals and multifractals are discussed and their properties are analyzed. The approach developed allows the evolution of cosmologic and cosmogonic objects, from galaxies and gas−dust astrophysical disks to cosmic dust, to be modeled on the basis of the generalized thermodynamics with fractional derivatives and the thermodynamics for fractal media. A specific feature of these objects is remoteness and globality of force interactions between the system elements, a hierarchical pattern (usually, multifractality) of the geometric and phase spaces, a significant range of spatial−temporal correlations, and the prevalence of asymptotic power-law statistical distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. At the same time, fractal filaments can be considered as a limiting result of the directed cluster-cluster aggregation in the external field; however, under isotropic conditions, the cluster-cluster aggregation results in formation of isotropic sparse aggregates.

  2. Fractal media are those with a fractional mass dimension (which is a physical analog of the Hausdorff dimension that requires no transition to the limit of infinitesimal diameters of the covering sets).

  3. Fractional partial derivatives are of high importance for developing the generalized hydrodynamics of hereditary nonlocal media (Uchaikin, 2008).

  4. These Rényi measures are transformed to the traditional Boltzmann−Gibbs entropy and the Kullback−Leibler discrimination information under q = 1.

  5. In connection with determining the weight-average of each random variable A, we will note the following: in the Rényi nonextensive statistics, there are three possible ways for averaging over distributions \({{p}_{i}},\)\(p_{i}^{q},\) and \({{P}_{i}}\) (see, Bibliography/ http://tsallis.cat.cbpf.br/biblio.htm). These averaging ways, each of which has its advantages and disadvantages, define the completely different q-thermodynamics, corresponding to these or those statistically anomalous systems. Due to this, a choice of the averaging way in physical applications is principled, since it turns out to be significant in the processing of experimental data (see, Tsallis et al., 1998; Tsallis, 1999; Martinez et al., 2000; Parvan and Biro, 2005; Bashkirov, 2006).

  6. We recall that the Lyapunov function is a function of fixed sign, which vanishes at the equilibrium point of a system. The equilibrium point is an attractor, when the sign of the time derivative of the Lyapunov function is opposite to that of the function itself.

  7. Self-similarity is characteristic only of regular fractals, whose manner of construction is determinate. However, if the algorithm of their generation contains a random element (as, for example, in many processes of the diffusive growing of crystals), the so-called random fractals appear; for this kind of fractal the self-similarity property is true only after averaging over all statistical realizations of the object.

  8. Depending on the task, by “a sphere” is also meant a cube, a square, or simply a straight line.

  9. The Boltzmann−Gibbs entropy is a measure of the amount of information required to define a system in some state i.

REFERENCES

  1. Abe, S., Remark on the escort distribution representation of nonextensive statistical mechanics, Phys. Lett. A, 2000, vol. 275, no. 4, pp. 250–253.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Armitage, P.J., Physical processes in protoplanetary disks, 2015. arXiv:1509.06382[astro-ph.SR].

  3. Badii, R. and Politi, A., Numerical investigation of nonuniform fractals, in Fractals in Physics, Amsterdam: North Holland, 1986, pp. 453–456.

    MATH  Google Scholar 

  4. Bashkirov A.G., Renyi entropy as statistical entropy for complex systems, Theor. Math. Phys., 2006, vol. 149, no. 2, pp. 1559–1573.

    Article  MathSciNet  MATH  Google Scholar 

  5. Beck, C., Upper and lower bounds on the Renyi dimensions and the uniformity of multifractals, Phys. D (Amsterdam), 1990, vol. 41, pp. 67–78.

    Article  MathSciNet  MATH  Google Scholar 

  6. Beck, C. and Schlogl, F., Thermodynamics of Chaotic Systems: An Introduction, Cambridge: Cambridge Univ. Press, 1993.

    Book  MATH  Google Scholar 

  7. Besicovitch, A.S., On the sum of digits of real numbers represented in the dyadic system, Math. Ann., 1934, vol. 110, no. 3, pp. 321–330.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bialas, A. and Czyz, W., Renyi entropies of a black hole from Hawking radiation, Europhys. Lett., 2008, vol. 83, no. 6, art. ID 60009.

    Article  ADS  MATH  Google Scholar 

  9. Blum, J., Grain growth and coagulation, in Astrophysics of Dust, ASP Conference Series vol. 309, Witt, A.N., Clayton, G.C., and Draine, B.T., Eds., San Francisco: Astron. Soc. Pac., 2004.

    Google Scholar 

  10. Blum, J. and Wurm, G., The growth mechanisms of macroscopic bodies in protoplanetary disks, Ann. Rev. Astron. Astrophys., 2008, vol. 46, pp. 21–56.

    Article  ADS  Google Scholar 

  11. Bozhokin, S.V. and Parshin, D.A., Fraktaly i mul’tifraktaly (Fractals and Multifractals), Moscow: Regulyarnaya i Khaoticheskaya Dinamika, 2001.

  12. Chavanis, P.-H., Trapping of dust by coherent vortices in the solar nebula, Astron. Astrophys., 2000, vol. 356, pp. 1089–1111.

    ADS  Google Scholar 

  13. Crownover, R.M., Introduction to Fractals and Chaos, Jones and Bartlett Books in Mathematics Series, London: Jones & Bartlett, 1995.

    Google Scholar 

  14. Cuzzi, J.N., Dobrovolskis, A.R., and Champney, J.M., Particle-gas dynamics in the mid-plane of a protoplanetary nebulae, Icarus, 1993, vol. 106, pp. 102–134.

    Article  ADS  Google Scholar 

  15. Cuzzi, J.N., Hogan, R.C., and Dobrovolskis, A.R., Turbulent concentration: fractal description, scaling laws, and generalized applications to planetesimal accretion, Proc. 29th Annual Lunar and Planetary Science Conf., March 16–20,1998, Houston, TX, 1998, no. 1443.

  16. Dominik, C. and Tielens, A.G., The physics of dust coagulation and the structure of dust aggregates in space, Astrophys. J., 1997, vol. 480, pp. 647–673.

    Article  ADS  Google Scholar 

  17. Daroczy, Z. Generalized information function, Inf. Control, 1970, vol. 16, pp. 36–51.

    Article  MathSciNet  MATH  Google Scholar 

  18. Estrada, P. R. and Cuzzi, J.N., Fractal growth and radial migration of solids: the role of porosity and compaction in an evolving nebula, Proc. 47th Lunar and Planetary Science Conf., March 21–25,2016, LPI Contribution no. 1903, Woodlands, 2016, p. 285.

  19. Feder, J., Fractals, New York: Springer-Verlag, 1988.

    Book  MATH  Google Scholar 

  20. Grassberger, P., On the Hausdorff dimension of fractal attractors, J. Stat. Phys., 1981, vol. 26, no. 1, pp. 173–179.

    Article  ADS  MathSciNet  Google Scholar 

  21. Grassberger, P., Generalizations of the Hausdorff dimension of fractal measures, Phys. Lett. A, 1985, vol. 107, no. 3, pp. 101–105.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Grassberger, P. and Procaccia, I., Characterization of strange attractors, Phys. Rev. Lett., 1983, vol. 50, no. 5, pp. 346–349.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Grassberger, P. and Procaccia, I., Dimensions and entropies of strange attractors from a fluctuating dynamics approach, Phys. D (Amsterdam), 1984, vol. 13, nos. 1–2, pp. 34–54.

    Article  MathSciNet  MATH  Google Scholar 

  24. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., and Shraiman, B.I. Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A, 1986, vol. 33, pp. 1141–1151.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Hardy, G., Littlewood, J.E., and Pólya, G., Inequalities, Cambridge: Cambridge Univ. Press, 1952, 2nd ed.

    MATH  Google Scholar 

  26. Hausdorff, F., Dimension und Ausseres mass, Math. Ann., 1919, vol. 79, pp. 157–179.

    Article  MATH  Google Scholar 

  27. Havrda, J. and Charvat, F., Quantification method of classification processes, Kybernetika, 1967, vol. 3, pp. 30–35.

    MathSciNet  MATH  Google Scholar 

  28. Hentschel, H.G.E. and Procaccia, I., The infinite number of generalized dimensions of fractals and strange attractors, Phys. D (Amsterdam), 1983, vol. 8, no. 3, pp. 435–444.

    Article  MathSciNet  MATH  Google Scholar 

  29. Jaynes, E.T., Information theory and statistical mechanics, in Brandeis Lectures on Statistical Physics, Dordrecht: Reidel, 1963, vol. 3, p. 160.

    Google Scholar 

  30. Jizba, P. and Arimitsu, T., Observability of Renyi’s entropy, Phys. Rev. E, 2004, vol. 69, no. 2, art. ID 026128.

    Article  ADS  MathSciNet  Google Scholar 

  31. Johal, R.S. and Rai, R., Nonextensive thermodynamic formalism for chaotic dynamical systems, Phys. A (Amsterdam), 2000, vol. 282, pp. 525–535.

    Article  Google Scholar 

  32. Jullien, R., A new model of cluster aggregation, J. Phys. A, 1986, vol. 19, no. 11, pp. 2129–2136

    Article  ADS  Google Scholar 

  33. Kataoka, A., Tanaka, H., Okuzumi, S., and Wada, K., Fluffy dust forms icy planetesimals by static compression, Astron. Astrophys., 2013, vol. 557, p. L4.

    Article  ADS  Google Scholar 

  34. Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., Fractional differential equations: An emergent field in applied and mathematical sciences, in Factorization, Singular Operators and Related Problems, Samko, S., Lebre, A., and Dos Santos, A.F., Eds., London: Kluwer, 2003, pp. 151–73.

    Google Scholar 

  35. Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.

    MATH  Google Scholar 

  36. Klimontovich, Yu.L., Turbulentnoe dvizhenie i struktura khaosa. Novyi podkhod k statisticheskoi teorii otkrytykh sistem (Turbulent Motion and Structure of Chaos: New Approach to Statistical Theory of Open Systems), Moscow: Nauka, 1990.

  37. Kolesnichenko, A.V., Synergetic mechanism of the development of coherent structures in the continual theory of developed turbulence, Sol. Syst. Res., 2004, vol. 38, no. 5, pp. 351–371.

    Article  ADS  Google Scholar 

  38. Kolesnichenko, A.V., Engineering of an entropy transport model based on Tsallis statistics, Preprint of Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2013, no. 33.

  39. Kolesnichenko, A.V., Thermal stability criterion and particle distribution law for self-gravitating astrophysical systems in the Tsallis statistics, Math. Montisnigri, 2016, vol. 37, pp. 45–75.

    MathSciNet  Google Scholar 

  40. Kolesnichenko, A.V., Nekotorye problemy konstruirovaniya kosmicheskikh sploshnykh sred: Modelirovanie akkretsionnykh protoplanetnykh diskov (Design of Space Continuous Media: Modeling of Accretionary Protoplanetary Disks), Moscow: Inst. Prikl. Matem. Im. M.V. Keldysha, 2017a.

  41. Kolesnichenko, A.V., Power distributions for self-gravitating astrophysical systems based on nonextensive Tsallis kinetics, Sol. Syst. Res., 2017b, vol. 51, no. 2, pp. 127–144.

    Article  ADS  Google Scholar 

  42. Kolesnichenko, A.V., The construction of non-additive thermodynamics of complex systems based on the Curado-Tsallis statistics, Preprint of Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2018a, no. 25.

  43. Kolesnichenko, A.V., Modeling of thermodynamics of non-additive media based on the Tsallis–Mendes–Plastino statistics, Preprint of Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2018b, no. 23.

  44. Kolesnichenko, A.V., Modification of the Gibbs fundamental equation of classical thermodynamics based on Kullback–Leibler divergence information, Preprint of Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2018c, no. 36.

  45. Kolesnichenko, A.V., Statisticheskaya mekhanika i termodinamika Tsallisa neadditivnykh sistem: Vvedenie v teoriyu i prilozheniya (Statistical Mechanics and Thermodynamics of Tsallis of Nonadditive Systems: Introduction to Theory and Applications), Moscow: Lenand, 2019.

  46. Kolesnichenko, A.V. and Cheverushkin, B.N., Kinetic derivation of a quasi-hydrodinamic system of equations on the base of nonextensive statistics, Russ. J. Numer. Anal. Math. Model., 2013, vol. 28, no. 6, pp. 547–576.

    Article  Google Scholar 

  47. Kolesnichenko, A.V. and Marov, M.Ya., Fundamentals of the mechanics of heterogeneous media in the circumsolar protoplanetary cloud: the effects of solid particles on disk turbulence, Sol. Syst. Res., 2006, vol. 40, no. 1, pp. 1–56.

    Article  ADS  Google Scholar 

  48. Kolesnichenko, A.V. and Marov, M.Ya., Turbulentnost’ i samoorganizatsiya. Problemy modelirovaniya kosmicheskikh i prirodnykh sred (Turbulence and Self-Organization: Modeling of Space and Natural Media), Moscow: BINOM. Laboratoriya Znanii, 2009.

  49. Kolesnichenko, A.V. and Marov, M.Ya., Modeling of aggregation of fractal dust clusters in a laminar protoplanetary disk, Sol. Syst. Res., 2013, vol. 47, no. 2, pp. 80–98.

    Article  ADS  Google Scholar 

  50. Kolesnichenko, A.V. and Marov, M.Ya., Modeling of the formation of dust fractal clusters as the basis of loose protoplanetesimals in the solar preplanetary cloud, Preprint of Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2014a, no. 75.

  51. Kolesnichenko, A.V. and Marov, M.Ya., Modification of the jeans instability criterion for fractal-structure astrophysical objects in the framework of nonextensive statistics, Sol. Syst. Res., 2014b, vol. 48, no. 5, pp. 354–365.

    Article  ADS  Google Scholar 

  52. Kolesnichenko, A.V. and Marov, M.Ya., Streaming instability in the gas–dust medium of the protoplanetary disc and the formation of fractal dust clusters, Sol. Syst. Res., 2019, vol. 53, no. 3, pp. 181–198.

    Article  ADS  Google Scholar 

  53. Kropivnitskaya, A. and Rostovtsev, A., Renyi statistics in high energy particle production, 2003. arXiv:hep-ph/0309287.

  54. Kullback, S., Information Theory and Statistics, New York: Dover, 1959.

    MATH  Google Scholar 

  55. Kullback, S. and Leibler, R.A., On information and sufficiency, Ann. Math. Stat., 1951, vol. 22, pp. 79–86.

    Article  MathSciNet  MATH  Google Scholar 

  56. Lissauer, J.J. and de Pater, I. Fundamental Planetary Science: Physics, Chemistry and Habitability, New York: Cambridge Univ. Press, 2013.

    Book  Google Scholar 

  57. Lorenz, E.N., Deterministic nonperiodic flow, J. Atmos. Sci., 1963, vol. 20, no. 2, pp. 130–148.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Makalkin, A.B. and Ziglina, I.N., Gravitational instability in the dust layer of a protoplanetary disk with interaction between the layer and the surrounding gas, Sol. Syst. Res., 2018, vol. 52, no. 6, pp. 518–533.

    Article  ADS  Google Scholar 

  59. Mandelbrot, B.B., Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, J. Fluid. Mech., 1974, vol. 62, pp. 331–358.

    Article  ADS  MATH  Google Scholar 

  60. Mandelbrot, B.B., Les Objects Fractals. Forms, Hasard et Dimension, Paris: Flammarion, 1975.

    MATH  Google Scholar 

  61. Mandelbrot, B.B., Fractals: Form, Change and Dimension, San Francisco: W.H. Freeman, 1977.

    MATH  Google Scholar 

  62. Mandelbrot, B.B., The Fractal Geometry of Nature, San Francisco: W.H. Freeman, 1982.

    MATH  Google Scholar 

  63. Marov, M.Ya., Small bodies in the Solar system and some problems in cosmogony, Phys.-Usp., 2005, vol. 48, no. 6, pp. 638–647.

    Article  ADS  Google Scholar 

  64. Marov, M.Ya. and Kolesnichenko, A.V., Turbulence and Self-Organization: Modeling Astrophysical Objects, New York: Springer-Verlag, 2013.

    Book  Google Scholar 

  65. Marov, M.Ya. and Rusol, A.V., Estimating the parameters of collisions between fractal dust clusters in a gas-dust protoplanetary disk, Astron. Lett., 2018, vol. 44, no. 7, pp. 474–481.

    Article  ADS  Google Scholar 

  66. Martinez, S., Nicolas, F., Pennini, F., and Plastino, A., Tsallis’ entropy maximization procedure revisited, Phys. A (Amsterdam), 2000, vol. 286, pp. 489–502.

    Article  MathSciNet  MATH  Google Scholar 

  67. Meisel, L., Johnson, M., and Cote, P.J., Box-counting multifractal analysis, Phys. Rev. A, 1992, vol. 45, pp. 6989–6996.

    Article  ADS  Google Scholar 

  68. Mizuno, H., Grain growth in the turbulent accretion disk solar nebula, Icarus, 1989, vol. 80, pp. 189–201.

    Article  ADS  Google Scholar 

  69. Mogilevskii, E.I., Fraktaly na Solntse (Fractals on the Sun), Moscow: Fizmatlit, 2001.

  70. Moon, F.C. and Li, G.-X., The fractal dimension of the two-well potential strange attractors, Phys. D (Amsterdam), 1985, vol. 17, no. 1, pp. 99–108.

    Article  MathSciNet  MATH  Google Scholar 

  71. Nagy, Á. and Romera, E., Maximum Rényi entropy principle and the generalized Thomas–Fermi model, Phys. Lett. A, 2009, vol. 373, nos. 8–9, pp. 844–846.

    Article  ADS  MATH  Google Scholar 

  72. Nakagawa, Y., Sekiya, M., and Hayashi, C., Settling and growth of dust particles in a laminar phase of a low-mass solar nebula, Icarus, 1986, vol. 67, pp. 375–390.

    Article  ADS  Google Scholar 

  73. Nakagawa, Y., Nakazawa, K., and Hayashi, C., Growth and sedimentation of dust grains in the primordial solar nebula, Icarus, 1981, vol. 45, pp. 517–528

    Article  ADS  Google Scholar 

  74. Nath, P., On coding theorem connected with Rényi’s entropy, Inf. Control, 1975, vol. 29, pp. 234–242.

    Article  MATH  Google Scholar 

  75. Nonextensive statistical mechanics and thermodynamics: bibliography. http://tsallis.cat.cbpf.br/biblio.htm.

  76. Okuzumi, S., Tanaka, H., Takeuchu, T., and Sakagami, M.-A., Electrostatic barrier against dust growth in protoplanetary disks. 1. Classifying the evolution of size distribution, Astrophys. J., 2011, vol. 731, pp. 95.

    Article  ADS  Google Scholar 

  77. Ormel, C.W., Spaans, M., and Tielens, A.G.G.M., Dust coagulation in protoplanetary disks: Porosity matters, Astron. Astrophys., 2007, vol. 461, pp. 215–236

    Article  ADS  Google Scholar 

  78. Ossenkopf, V., Dust coagulation in dense molecular clouds: the formation of fluffy aggregates, Astron. Astrophys., 1993, vol. 280, pp. 617–646.

    ADS  Google Scholar 

  79. Parvan, A.S. and Biro, T.S., Ther modynamical limit in non-extensive Renyi statistics, Phys. Lett. A, 2005, vol. 340, nos. 5–6, pp. 375–387.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Peebles, P.J.E., Large-Scale Structure of the Universe, Princeton, NJ: Princeton Univ. Press, 1980.

    MATH  Google Scholar 

  81. Potapov, A.A., Fraktaly v radiotekhnike i radiolokatsii” Topologiya vyborki (Fractals in Radio Engineering and Radiolocation: Sampling Topology), Moscow: Universitetskaya Kniga, 2002.

  82. Rathie, P.N. and Kannappan, P., A directed-divergence function of type β, Inf. Control, 1972, vol. 20, pp. 38–45.

    Article  MathSciNet  MATH  Google Scholar 

  83. Renyi, A., On measures of entropy and information, Proc. 4th Berkeley Symp. on Mathematical Statistics and Probability, Berkeley, Los Angeles: Univ. California Press, 1961, vol. 1, pp. 547–561.

  84. Renyi, A., Probability Theory, Amsterdam: North-Holland, 1970.

    MATH  Google Scholar 

  85. Ruelle, D. and Takens, F., On the nature of turbulence, Commun. Math. Phys., 1971, vol. 20, no. 3, pp. 167–192.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Safronov, V.S., Evolyutsiya doplanetarnogo oblaka i obrazovanie Zemli i planet (The Evolution of the Pre-Planetary Cloud and the Formation of the Earth and Planets), Moscow: Nauka, 1969.

  87. Schrödinger, E., What Is Life? Cambridge: Cambridge Univ. Press, 1944.

    Google Scholar 

  88. Schroeder, M.R., Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, New York: Freeman, 1991.

    MATH  Google Scholar 

  89. Shariff, K. and Cuzzi, J.N., Gravitational instability of solids assisted by gas drag: slowing by turbulent mass diffusivity, Astrophys. J., 2011, vol. 738, no. 1, art. ID 73.

    Article  ADS  Google Scholar 

  90. Smirnov, B.M., Fizika fraktal’nykh klasterov (Physics of Fractal Clusters), Moscow: Nauka, 1991.

  91. Strichartz, R.S., Analysis on fractals, Not. Am. Math. Soc., 1999, vol. 46, no. 10, pp. 1199–1208.

    MathSciNet  MATH  Google Scholar 

  92. Suyama, T., Wada, K., and Tanaka, H., Numerical simulation of density evolution of dust aggregates in protoplanetary disks. I. Head-on collisions, Astrophys. J., 2008, vol. 684, pp. 1310–1322.

    Article  ADS  Google Scholar 

  93. Suyama, T., Wada, K., Tanaka, H., and Okuzumi, S. Geometrical cross sections of dust aggregates and a compression model for aggregate collisions, 2012. arxiv:1205.1894vl [astro-ph. EP].

  94. Tarasov, V.E., Fractional hydrodynamic equations for fractal media, Ann. Phys., 2005, vol. 318, no. 2, pp. 286–307.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Tarasov, V.E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, New York: Springer-Verlag, 2010.

    Book  MATH  Google Scholar 

  96. Tsallis, C., Nonextensive ther mostatistics and fractal, Fractals, 1995, vol. 3, pp. 541–554.

    Article  MATH  Google Scholar 

  97. Tsallis, C., Nonextensive statistics: theoretical, experimental and computational evidences and connections, Braz. J. Phys., 1999, vol. 29, no. 1, pp. 1–35.

    Article  ADS  Google Scholar 

  98. Tsallis, C., Nonextensive statistical mechanics and thermodynamics: historical back ground and present status, in Nonextensive Statistical Mechanics and Its Applications, Lecture Notes in Physics vol. 560, Abe, S. and Okamoto, Y., Eds., New York: Springer-Verlag, 2002, vol. 13, pp. 371–391.

    MATH  Google Scholar 

  99. Tsallis, C., Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, New York: Springer, 2009.

    MATH  Google Scholar 

  100. Tsallis, C., Mendes, R.S., and Plastino, A.R., The role of containts within generalized nonextensive statistics, Phys. A (Amsterdam), 1998, vol. 261, pp. 534–554.

    Article  Google Scholar 

  101. Uchaikin, V.V., Metod drobnykh proizvodnykh (The Fractional Derivative Method), Ulyanovsk: Artishok, 2008.

  102. Wada, K., Tanaka, H., Suyama, T., Kimura, H., and Yamamoto, T., Simulation of dust aggregate collisions. II. Compression and disruption of three-dimensional aggregates in head-on collisions, Astrophys. J., 2008, vol. 677, pp. 1296–1308.

    Article  ADS  Google Scholar 

  103. Weidenschilling, S.J., Dust to planetesimals: settling and coagulation in the solar nebula, Icarus, 1980, vol. 44, pp. 172–189.

    Article  ADS  Google Scholar 

  104. Weidenschilling, S.J., Formation of planetesimals and accretion of the terrestrial planets, Space Sci. Rev., 2000, vol. 92, pp. 295–310.

    Article  ADS  Google Scholar 

  105. Wetherill, G.W. and Stewart, G.R., Accumulation of a swarm of small planetesimals, Icarus, 1989, vol. 77, pp. 330–357.

    Article  ADS  Google Scholar 

  106. Yang, C.-C. and Johansen, A., On the feeding zone of planetesimal formation by the streaming instability, Astrophys. J., 2014, vol. 792, no. 2, pp. 86.

    Article  ADS  Google Scholar 

  107. Yang, C.-C., Johansen, A., and Carrera, D., Concentrating small particles in protoplanetary disks through the streaming instability, Astron. Astrophys., 2017, vol. 606, art. ID A80.

    Article  Google Scholar 

  108. Youdin, A.N., On the formation of planetesimals via secular gravitational instabilities with turbulent stirring, Astrophys. J., 2011, vol. 731, no. 2, art. ID 99.

    Article  ADS  Google Scholar 

  109. Youdin, A.N. and Goodman, J., Streaming instabilities in protoplanetary disks, Astrophys. J., 2005, vol. 620, pp. 459–469.

    Article  ADS  Google Scholar 

  110. Zaripov, R.G., Samoorganizatsiya i neobratimost’ v neekstensivnykh sistemakh (Self-organization and Irreversibility in Nonextensive Systems), Kazan: Fen, 2002.

  111. Zaripov, R., Evolution of the entropy and Renyi difference information during self-organization of open additive systems, Russ. Phys. J., 2005, vol. 48, no. 3, pp. 267–274.

    Article  MATH  Google Scholar 

  112. Zaripov, R.G., Printsipy neekstensivnoi statisticheskoi mekhaniki i geometriya mer besporyadka i poryadka (The Principles of Nonextensive Statistical Mechanics and the Geometry of Measures of Disorder and Order), Kazan: Kazan. Gos. Tekh. Univ., 2010.

  113. Zubarev, D.P., Neravnovesnaya statisticheskaya mekhanika (Nonequilibrium Statistical Mechanics), Moscow: Nauka, 1971.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Kolesnichenko or M. Ya. Marov.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnichenko, A.V., Marov, M.Y. Rényi Thermodynamics as a Mandatory Basis to Model the Evolution of a Protoplanetary GasDust Disk with a Fractal Structure. Sol Syst Res 53, 443–461 (2019). https://doi.org/10.1134/S0038094619060042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094619060042

Keywords:

Navigation