Skip to main content
Log in

Fundamental Problems of Lunar Research, Technical Solutions, and Priority Lunar Regions for Research

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

In this article, we discuss four fundamental scientific problems of lunar research: (1) lunar chronology, (2) the internal structure of the Moon, (3) the lunar polar regions, and (4) lunar volcanism. After formulating the scientific problems and their components, we proceed to outlining a list of technical solutions and priority lunar regions for research. Solving the listed problems requires investigations on the lunar surface using lunar rovers, which can deliver a set of analytical equipment to places where geological conditions are known from a detailed analysis of orbital information. The most critical research methods, which can answer some of the key questions, are analysis of local geological conditions from panoramic photographs, determination of the chemical, isotopic, and mineral composition of the soil, and deep seismic sounding. A preliminary list is given of lunar regions with high scientific priority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, J.R., Ice in the lunar polar region, J. Geophys. Res.: Solid Earth, 1979, vol. 84, no. 10, pp. 5659–5668.

    Article  Google Scholar 

  • Basilevsky, A.T., Abdrakhimov, A.M., and Dorofeeva, V.A., Water and other volatiles on the moon: a review, Sol. Syst. Res., 2012, vol. 46, no. 2, pp. 89–107.

    Article  ADS  Google Scholar 

  • Boynton, W.V., Droege, G.F., Mitrofanov, I.G., McClanahan, T.P., Sanin, A.B., Litvak, M.L., Schaffner, M., Chin, G., Evans, L.G., Garvin, J.B., Harshman, K., Malakhov, A., Milikh, G., Sagdeev, R., and Starr, R., High spatial resolution studies of epithermal neutron emission from the lunar poles: constraints on hydrogen mobility, J. Geophys. Res.: Planets, 2012, vol. 117, p. E00H33. doi 10.1029/2011JE003979

    Article  ADS  Google Scholar 

  • Bulow, R.C., Johnson, C.L., Bills, B.G., and Shearer, P.M., Temporal and spatial properties of some deep moonquake clusters, J. Geophys. Res.: Planets, 2007, vol. 112, p. E09003. doi 10.1029/2006JE002847

    Article  ADS  Google Scholar 

  • Bussey, D.B.J., McGovern, J.A., Spudis, P.D., Neis, C.D., Noda, H., Ishihara, Y., and Sorensen, S.-A., Illumination conditions of the south pole of the Moon derived using Kaguya topography, Icarus, 2010, vol. 208, pp. 558–564.

    Article  ADS  Google Scholar 

  • Butler, B., The migration of volatiles on the surfaces of Mercury and the Moon, J. Geophys. Res.: Planets, 1997, vol. 102, no. 8, pp. 19283–19291.

    Article  ADS  Google Scholar 

  • Chenet, H., Lognonne, P., Wieczorek, M., and Mizutani, H., Lateral variations of lunar crustal thickness from the Apollo seismic data set, Earth Planet. Sci. Lett., 2006, vol. 243, pp. 1–14.

    Article  ADS  Google Scholar 

  • Christensen U. Effects of phase transitions on mantle convection, Annu. Rev. Earth Planet. Sci., 1995, vol. 23, pp. 65–87.

    Article  ADS  Google Scholar 

  • Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R.C., Goldstein, D., Summy, D., Bart, G.D., Asphaug, E., Korycansky, D., Landis, D., and Sollitt, L., Detection of water in the LCROSS ejecta plume, Science, 2010, vol. 330, pp. 463–468.

    Article  ADS  Google Scholar 

  • De Hon, R.A., Thickness of the western mare basalts, Proc. 10th Lunar and Planetary Science Conf., Houston, TX: Lunar Planet. Inst., 1979, vol. 3, pp. 2935–2955.

    Google Scholar 

  • De Hon, R.A., Thickness of mare material in the Tranquillitatis and Nectaris basins, Proc. 5th Lunar and Planetary Science Conf., Houston, TX: Lunar Planet. Inst., 1974, vol. 1, pp. 53–59.

    Google Scholar 

  • Djachkova, M.V., Litvak, M.L., Mitrofanov, I.G. and Sanin, A.B., Selection of Luna-25 landing sites in the South Polar Region of the Moon, Sol. Syst. Res., 2017, vol. 51, no. 3, pp. 185–195.

    Article  ADS  Google Scholar 

  • Donaldson Hanna, K.L., Wyatt, M.B., Thomas, I.R., Bowles, N.E., Greenhagen, B.T., Maturilli, A., Helbert, J., and Paige, D.A., Thermal infrared emissivity measurements under a simulated lunar environment: Application to the Diviner Lunar Radiometer Experiment, J. Geophys. Res.: Planets, 2012, vol. 117, p. E00H05. doi 10.1029/2011JE003862

    ADS  Google Scholar 

  • Fassett, C.I., Head, J.W., Smith, D.E., Zuber, M.T., and Neumann, G.A., Thickness of proximal ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) data: Implications for multiring basin formation, Geophys. Res. Lett., 2011, vol. 38, p. L17201. doi 10.1029/2011GL048502

    ADS  Google Scholar 

  • Feldman, W.C., Elphic, R.C., Barraclough, B.L., Maurice, S., Genetay, I., and Binder, A.B., Polar hydrogen deposits on the Moon, J. Geophys. Res., 2000, vol. 105, pp. 4175–4195.

    Article  ADS  Google Scholar 

  • Feldman, W.C., Maurice, S., Lawrence, D.J., Little, R.C., Lawson, S.L., Gasnault, O., Wiens, R.C., Barraclough, B.L., Elphic, R.C., Prettyman, T.H., Steinberg, J.T., and Binder, A.B., Evidence for water ice near the lunar poles, J. Geophys. Res., 2001, vol. 106, pp. 23231–23252.

    Article  ADS  Google Scholar 

  • Feldman, W.C., Maurice, S., Binder, A.B., Barraclough, B.L., Elphic, R.C., and Lawrence, D.J., Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles, Science, 1998, vol. 281, pp. 1496–1500.

    Article  ADS  Google Scholar 

  • Fuller, M. and Cisowski, S.M., Lunar paleomagnetism, in Geomagnetism, Jacobs, J.A., Ed., New York: Academic, 1987, pp. 307–455.

    Google Scholar 

  • Gaddis, L.R., Pieters, C.M., and Hawke, B.R., Remote sensing of Lunar pyroclastic mantling deposits, Icarus, 1985, vol. 61, pp. 461–489.

    Article  ADS  Google Scholar 

  • Gaddis, L.R., Staid, M.I., Tyburczy, J.A., Hawke, B.R., and Petro, N.E., Compositional analyses of lunar pyroclastic deposits, Icarus, 2003, vol. 161, pp. 262–280.

    Article  ADS  Google Scholar 

  • Gaddis, L.R., Hawke, B.R., Robinson, M.S., and Coombs, C., Compositional analyses of small lunar pyroclastic deposits using Clementine multispectral data, J. Geophys. Res.: Planets, 2000, vol. 105, no. 2, pp. 4245–4262.

    Article  ADS  Google Scholar 

  • Halekas, J.S., Mitchell, D.L., Lin, R.P., Frey, S., Hood, L.L., Acuna, M.H., and Binder, A.B., Mapping of crustal magnetic anomalies on the lunar near side by the Lunar Prospector electron reflectometer, J. Geophys. Res., 2001, vol. 106, pp. 27841–27852.

    Article  ADS  Google Scholar 

  • Head, J.W., Lunar dark-mantle deposits: possible clues to the distribution of early mare deposits, Proc. 5th Lunar and Planet. Space Conf., Houston, TX: Lunar Planet. Inst., 1974, vol. 1, pp. 207–222.

    ADS  Google Scholar 

  • Head, J.W. and McCord, T.B., Imbrian-age highland volcanism on the Moon: The Gruithuisen and Mairan domes, Science, 1978, vol. 199, pp. 1433–1436.

    Article  ADS  Google Scholar 

  • Head, J.W. and Solomon, S.C., Tectonic evolution of the terrestrial planets, Science, 1981, vol. 213, pp. 62–76.

    Article  ADS  Google Scholar 

  • Head, J.W. and Wilson, L., Alphonsus-type dark-halo craters: Morphology, morphometry and eruption conditions, Proc. 10th Lunar and Planetary Science Conf., Houston, TX: Lunar Planet. Inst., 1979, pp. 2861–2897.

    Google Scholar 

  • Head, J.W. and Wilson, L., Basaltic pyroclastic eruptions: Influence of gas-release patterns and volume fluxes on fountain structure, and formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows, J. Volcanol. Geotherm. Res., 1989, vol. 37, pp. 261–271.

    Article  ADS  Google Scholar 

  • Head, J.W. and Wilson, L., Lunar mare volcanism: stratigraphy, emption conditions, and the evolution of secondary crusts, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 2155–2175.

    Article  ADS  Google Scholar 

  • Hess, P.C., Diapirism and the origin of high TiO2 mare glasses, Geophys. Res. Lett., 1991, vol. 18, pp. 2069–2072.

    Article  ADS  Google Scholar 

  • Hess, P.C. and Parmentier, E.M., Overturn of magma ocean ilmenite cumulate layer: Implications for lunar magmatic evolution and formation of a lunar core, Proc. 24th Lunar and Planetary Science Conf., Houston, TX: Lunar Planet. Inst., 1993, pp. 651–652.

    Google Scholar 

  • Hiesinger, H., Jaumann, R., Neukum, G., and Head, J.W., Ages of mare basalts on the lunar nearside, J. Geophys. Res., 2000, vol. 105, pp. 29239–29275.

    Article  ADS  Google Scholar 

  • Hiesinger, H., Head, J.W., Wolf, U., Jaumann, R., and Neukum, G., Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum, J. Geophys. Res.: Planets, 2003, vol. 108, no. 7, p. 5065. doi 10.1029/2002JE001985

    Article  ADS  Google Scholar 

  • Hiesinger, H., Head, J.W., Wolf, U., Jaumann, R., and Neukum, G., Ages and stratigraphy of lunar mare basalts: a synthesis, in Recent Advances and Current Research Issues in Lunar Stratigraphy, Boulder, CO: Geol. Soc. Am., 2011, vol. 477, pp. 1–52.

    Google Scholar 

  • Hiesinger, H., van der Bogert, C.H., Pasckert, J.H., Schmedemann, N., Robinson, M.S., Jolliff, B., and Petro, N., New crater size-frequency distribution measurements of the South Pole Aitken basin, Proc. 43rd Lunar and Planetary Science Conf., Abstracts of Papers, Houston, TX: Lunar Planet. Inst., 2012, vol. 43, no. 2863.

    Google Scholar 

  • Hikida, H. and Wieczorek, M.A., Crustal thickness of the Moon: New constraints from gravity inversions using polyhedral shape models, Icarus, 2007, vol. 192, pp. 150–166.

    Article  ADS  Google Scholar 

  • Hood, L.L., Geophysical constraints on the lunar interior, in Origin of the Moon, Hartmann, W.K., Phillips, R.J., and Taylor, G.J., Eds., Houston, TX: Lunar Planet. Inst., 1986, pp. 361–410.

    Google Scholar 

  • Hood, L.L., Mitchell, D.L., Lin, R.P., Acuna, M.H., and Binder, A.B., Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector magnetometer data, Geophys. Res. Lett., 1999, vol. 26, pp. 2327–2330.

    Article  ADS  Google Scholar 

  • Hosley, R.M., Cirlin, E.H., and Grant, R.W., Characterization of fines from the Apollo 16 site, Proc. 4th Lunar Science Conf., Houston, TX: Lunar Planet. Inst., 1973, vol. 3, pp. 2729–2735.

    Google Scholar 

  • Hosley, R.M., Cirlin, E.H., Paton, N.E., and Goldberg, I.B., Solar wind and micrometeorite alteration of the lunar regolith, Proc. 5th Lunar Science Conf., New York: Pergamon, 1974, vol. 3, pp. 2623–2642.

    Google Scholar 

  • Housen, K.R., Schmidt, R.M., and Holsapple, K.A., Crater ejecta scaling laws' fundamental forms based on dimensional analysis, J. Geophys. Res.: Solid Earth, 1983, vol. 88, no. 3, pp. 2485–2499.

    Article  Google Scholar 

  • Ivanov, M.A., Abdrakhimov, A.M., Basilevsky, A.T., Dixon, J.L., Head, J.W., Chick, L., Vitten, J., Zuber, M.T., Simt, D.E., Mazarico, E., Neish, C.D., and Bassey, D.B.J., Geological context of potential landing site of the Luna-Glob mission, Sol. Syst. Res., 2014, vol. 51, no. 6, pp. 391–402.

    Article  ADS  Google Scholar 

  • Ivanov, M.A., Hiesinger, H., Abdrakhimov, A.M., Basilevsky, A.T., Head, J.W., Pasckert, J.-H., Bauch, K., van der Bogert, C.H., Gläser, P., and Kohanov, A., Landing site selection for Luna-Glob mission in crater Boguslawsky, Planet. Space Sci., 2015, vol. 117, pp. 45–63.

    Article  ADS  Google Scholar 

  • Ivanov, M.A., Head, J.W., and Bystrov, A., The lunar Gruithuisen silicic extrusive domes: Topographic configuration, morphology, ages, and internal structure, Icarus, 2016, vol. 273, pp. 262–283.

    Article  ADS  Google Scholar 

  • Jolliff, B.L., Floss, C., McCallum, I.S., and Schwartz, J.M., Geochemistry, petrology, and cooling history of 14161, 7373: A plutonic lunar sample with textural evidence of granitic-fraction separation by silicate-liquid immiscibility, Am. Miner., 1999, vol. 84, pp. 821–837.

    Article  ADS  Google Scholar 

  • Jolliff, B.L., Gillis, J.J., Haskin, L.A., Korotev, R.L., and Wieczorek, M.A., Major lunar crustal terranes: Surface expressions and crust-mantle origins, J. Geophys. Res.: Planets, 2000, vol. 105, no. 2, pp. 4197–4216.

    Article  ADS  Google Scholar 

  • Jozwiak, L.M., Head, J.W., Zuber, M.T., Smith, D.E., and Neumann, G.A., Lunar floor-fractured craters: classification, distribution, origin and implications for magmatism and shallow crustal structure, J. Geophys. Res.: Planets, 2012, vol. 117, p. E11005. doi 10.1029/2012JE004134

    Article  ADS  Google Scholar 

  • Khan, A. and Mosegaard, K., An inquiry into the lunar interior: A nonlinear inversion of the Apollo lunar seismic data, J. Geophys. Res.: Planets, 2002, vol. 107, no. 6, p. 5036. doi 10.1029/2001JE001658

    Article  ADS  Google Scholar 

  • Kovach, R.L., Watkins, J.S., and Talwani, P., Active Seismic Experiment, Apollo 16 Preliminary Science Report, Houston, TX: NASA Lyndon B. Johnson Space Center, 1972, no. SEE N73-21729, pp. 10–1.

    Google Scholar 

  • Langseth, M.G., Clark, S.P., Chute, J.L., Keihm, S.J., and Wechsler, A.E., Heat-Flow Experiment, Apollo 16 Preliminary Science Report, Houston, TX: NASA Lyndon B. Johnson Space Center, 1972, no. SEE N72-22814-13-30, pp.11-1–11-23.

    Google Scholar 

  • Langseth, M.G., Keihm, S.J., and Chute, J.L., Heat-flow experiment, in Apollo 17 Preliminary Science Report, Houston, TX: NASA Lyndon B. Johnson Space Center, 1973, no. NASA SP-330, pp. 9–1.

    Google Scholar 

  • Latham, G.V., Ewing, M., Press, F., Sutton, G., Dorman, J., Toksoz, N., Wiggins, R., Nakamura, Y., Derr, J., and Duennebier, F., Passive seismic experiment, in Apollo 11 Preliminary Science Report, Washington, DC: Natl. Aeronaut. Space Admin., 1969, no. NASA SP-214, pp. 143–162.

    Google Scholar 

  • Latham, G.V., Ewing, M., Press, F., Dorman, J., Nakamura, Y., Toksoz, N., Lammlein, D., Duennebier, F., and Dainty, A., Passive seismic experiment, Apollo 17 Preliminary Science Report, Washington, DC: Natl. Aeronaut. Space Admin., 1973, no. NASA SP-330, pp. 10–1.

    Google Scholar 

  • Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Binder, A.B., Elphic, R.C., Maurice, S., Miller, M.C., and Prettyman, T.H., High resolution measurements of absolute thorium abundances on the lunar surface, Geophys. Res. Lett., 1999, vol. 26, no. 17, pp. 2681–2684.

    Article  ADS  Google Scholar 

  • Lawrence, D.J., Elphic, R.C., Feldman, W.C., Prettyman, T.H., Gasnault, O., and Maurice, S., Small-area thorium features on the lunar surface, J. Geophys. Res.: Planets, 2003, vol. 108, no. 9, p. 5102. doi 10.1029/2003JE002050

    Article  ADS  Google Scholar 

  • Litvak, M.L., Mitrofanov, I.G., Sanin, A.B., Golovin, D.V., Malakhov, A.V., Boynton, W.V., Droege, G.F., Harshman, K., Starr, R.D., Milikh, G., and Sagdeev, R., LEND neutron data processing for the mapping of the Moon, J. Geophys. Res.: Planets, 2012, vol. 117, p. E00H32. doi 10.1029/2011JE004035

    ADS  Google Scholar 

  • Lognonne, P., Gagnepain-Beyneix, J., and Chenet, H., A new seismic model for the Moon: Implications for structure, thermal evolution and formation of the Moon, Earth Planet. Sci. Lett., 2003, vol. 211, pp. 27–44.

    Article  ADS  Google Scholar 

  • McGetchin, T.R., Settle, M., and Head, J.W., Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits, Earth Planet. Sci. Lett., 1973, vol. 20, pp. 226–236.

    Article  ADS  Google Scholar 

  • Melosh, H.J., Impact Cratering: A Geologic Process, New York: Oxford Univ. Press, 1989.

    Google Scholar 

  • Mitrofanov, I.G., Bartels, A., Bobrovnitsky, Y.I., Boynton, W., Chin, G., Enos, H., Evans, L., Floyd, S., Garvin, J., Golovin, D.V., Grebennikov, A.S., Harshman, K., Kazakov, L.L., Kelle, J., Konovalov, A.A., et al., Lunar exploration neutron detector for the NASA Lunar Reconnaissance Orbiter, Space Sci. Rev., 2010a, vol. 150, pp. 183–207.

    Article  ADS  Google Scholar 

  • Mitrofanov, I.G., Sanin, A.B., Boynton, W.V., Chin, G., Garvin, J.B., Golovin, D., Evans, L.G., Harshman, K., Kozyrev, A.S., Litvak, M.L., Malakhov, A., Mazarico, E., McClanahan, T., Milikh, G., Mokrousov, M., et al., Hydrogen mapping of the Lunar South Pole using the LRO neutron detector experiment LEND, Science, 2010b, vol. 330, pp. 483–486.

    Article  ADS  Google Scholar 

  • Mitrofanov, I.G., Litvak, M., Sanin, A., Malakhov, A., Golovin, D., Boynton, W., Droege, G., Chin, G., Evans, L., Harshman, K., Fedosov, F., Garvin, J., Kozyrev, A., McClanahan, T., Milikh, G., et al., Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO, J. Geophys. Res.: Planets, 2012, vol. 117, p. E00H27. doi 10.1029/2011JE003956

    Article  Google Scholar 

  • Mitrofanov, I.G., Djachkova, M., Litvak, M., and Sanin, A., The method of landing sites selection for Russian lunar lander missions, in The General Assembly 2016 of the European Geosciences Union, Abstracts of Papers, Vienna, 2016, vol. 18, no. 10018.

    Google Scholar 

  • Morota, T., Haruyama, J., Honda, C., Ohtake, M., Yokota, Y., Kimura, J., Matsunaga, T., Ogawa, Y., Hirata, N., Demura, H., Iwasaki, A., Miyamoto, H., Nakamura, R., Ishihara, Y., and Sasaki, S., Ages and thicknesses of mare basalts in Mare Moscoviense: Results from SELENE (Kaguya) Terrain Camera data, Proc. 4th Lunar and Planetary Science Conf., Abstracts of Papers, Woodlands, 2009, vol. 40, no. 1280.

    Google Scholar 

  • Nakamura, Y., New identification of deep moonquakes in the Apollo lunar seismic data, Phys. Earth Planet. Int., 2003, vol. 139, pp. 197–205.

    Article  ADS  Google Scholar 

  • Nakamura, Y., Farside deep moonquakes and deep interior of the Moon, J. Geophys. Res.: Planets, 2005, vol. 110, p. E01001. doi 10.1029/2004JE002332

    ADS  Google Scholar 

  • Namiki, N., Iwata, T., Matsumoto, K., Hanada, H., Noda, H., Goossens, S., Ogawa, M., Kawano, N., Asari, K., Tsuruta, S., Ishihara, Y., Liu, Q., Kikuchi, F., Ishikawa, T., Sasaki, S., et al., Farside gravity field of the Moon from four-way doppler measurements of SELENE (Kaguya), Science, 2009, vol. 323, pp. 900–905.

    Article  ADS  Google Scholar 

  • National Research Council, The Scientific Context for Exploration of the Moon: Final Report, Washington, DC: National Academies Press, 2007.

    Google Scholar 

  • Neukum, G., Ivanov, B.A., and Hartmann, W.K., Cratering records in the inner Solar System in relation to the Lunar reference system, Space Sci. Rev., 2001, vol. 96, no. 1/4, pp. 55–86.

    Article  ADS  Google Scholar 

  • Peng, W.X., Wang, H.Y., Cui, X.Z., Zhang, C.M., Liang, X.H., Liu, Y.Q., Cao, X.L., Zhang, C.L., Zhang, J.Y., Wang, J.Z., Guo, D.Y., Gao, M., Yang, J.W., Fan, R.R., Chang, J., et al., Active particle-induced X-ray spectrometer for CHANG’E-3 YuTu rover mission and its first results, Proc. 44th Lunar and Planetary Science Conf., Woodlands, 2014, vol. 45, no. 1699.

    Google Scholar 

  • Pieters, C.M., Boardman, J., Buratti, B., Chatterjee, A., Clark, R., Glavich, T., Green, R., Head, J., Isaacson, P., Malaret, E., McCord, T., Mustard, J., Petro, N., Runyon, C., Staid, M., et al., The Moon mineralogy mapper (M3) on Chandrayaan-1, Curr. Sci., 2009, vol. 96, no. 4, pp. 500–505

    Google Scholar 

  • Pike, R.J., Ejecta from large craters on the Moon: Comments on the geometric model of McGetchin et al., Earth Planet. Sci. Lett., 1974, vol. 23, pp. 265–274.

    Article  ADS  Google Scholar 

  • Purucker, M.E., A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations, Icarus, 2008, vol. 197, pp. 19–23.

    Article  ADS  Google Scholar 

  • Reid, A.M., Warner, J., Ridley, W.I., Johnston, D.A., Harmon, R.S., Jakes, P., and Brown, R.W., The major element compositions of lunar rocks as inferred from glass compositions in the lunar soils, Proc. 3rd Lunar and Planetary Science Conf., Houston, TX: Lunar Planet. Inst., 1972, vol. 1, pp. 363–378.

    Google Scholar 

  • Robinson, M.S., Brylow, S.M., Tschimmel, M., Humm, D., Lawrence, S.J., Thomas, P.C., Denevi, B.W., Bowman-Cisneros, E., Zer, J., Ravine, M.A., Caplinger, M.A., Ghaemi, F.T., Schaffner, J.A., Malin, M.C., Mahanti, P., et al., Lunar Reconnaissance Orbiter Camera (LROC) instrument overview, Space Sci. Rev., 2010, vol. 150, pp. 81–124.

    Article  ADS  Google Scholar 

  • Roedder, E. and Weiblen, P.W., Petrology of silicate melt inclusions, Apollo 11 and Apollo 12 and terrestrial equivalents, Proc. 1st Lunar and Planetary Science Conf., Houston, TX: Lunar Planet. Inst., 1971, vol. 1, pp. 507–528.

    Google Scholar 

  • Roedder, E. and Weiblen, P.W., Petrographic features and petrologic significance of melt inclusions in Apollo 14 and 15 rocks, Proc. 3rd Lunar and Planetary Science Conf., Houston, TX: Lunar Planet. Inst., 1972, vol. 1, pp. 251–279.

    Google Scholar 

  • Rutherford, M.J., Hess, P.C., Ryreson, F.J., Campbell, H.W., and Dick, P.A., The chemistry, origin and petrogenetic implications of lunar granite and monzonite, Proc. 7th Lunar and Planetary Science Conf., Houston, TX: Lunar Planet. Inst., 1976, pp. 1723–1740.

    Google Scholar 

  • Saal, A.E., Hauri, E.H., Lo Cascio, M., van Orman, J.A., Rutherford, M.C., and Cooper, R.F., Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior, Nature, 2008, vol. 454, pp. 192–195.

    Article  ADS  Google Scholar 

  • Sanin, A.B., Mitrofanov, I.G., Litvak, M.L., Bakhtin, B.N., Bodnarik, J.G., Boynton, W.V., Chin, G., Evans, L.G., Harshman, K., Fedosov, F., Golovin, D.V., Kozyrev, A.S., Livengood, T.A., Malakhov, A.V., McClanahan, T.P., et al., A geological investigation of the Taurus–Littrow valley, in Apollo 17 Preliminary Science Report, Houston, TX: NASA Lyndon B. Johnson Space Center, 1973, no. NASA SP-330, pp. 5–1.

    Google Scholar 

  • Schultz, P.H., Floor-fractured lunar craters, Moon, 1976, vol. 15, pp. 241–273.

    Article  ADS  Google Scholar 

  • Scott, D.R., Worden, A.M., and Irwin, J.B., Crew observations, in Apollo 15 Preliminary Science Report, Houston, TX: NASA Johnson Space Center, 1971, no. NASA SP-289, p. 4-1.

    Google Scholar 

  • Sharpton, V.L., Outcrops on lunar crater rims: Implications for rim construction mechanisms, ejecta volumes and excavation depths, J. Geophys. Res., 2014, vol. 119, pp. 154–168. doi 10.1002/2013JE004523

    Article  Google Scholar 

  • Sinitsyn, M.P., Litvak, M.L., Mitrofanov, I.G., and Sanin, A.B., Analysis of lunar pyroclastic deposits using LEND spectrometer data, Proc. 44th Lunar and Planetary Science Conf., Abstracts of Papers, Woodlands, 2014, vol. 45, no. 1066.

    Google Scholar 

  • Smith, D.E., Zuber, M.T., Neumann, G.A., Lemoine, F.G., Mazarico, E., Torrence, M.H., McGarry, J.F., Rowlands, D.D., Head, J.W., Duxbury, T.H., Aharonson, O., Lucey, P.G., Robinson, M.S., Barnouin, O.S., Cavanaugh, J.F., et al., Initial observations from the Lunar Orbiter Laser Altimeter (LOLA), Geophys. Res. Lett., 2010, vol. 37, p. L18204. doi 10.1029/2010GL043751

    ADS  Google Scholar 

  • Solomatov, V.S., Fluid dynamics of a terrestrial magma ocean, in Origin of the Earth and Moon, Canup, R. and Righter, K., Eds., Tucson: Univ. of Arizona Press, 2000, pp. 323–338.

    Google Scholar 

  • Solomon, S.C. Mare volcanism and lunar crustal structure, Proc. 6th Lunar and Planetary Science Conf., Houston, TX: Lunar Planet. Inst., 1975, vol. 6, pp. 1021–1042.

    Google Scholar 

  • Starukhina, L.V. and Shkuratov, Yu.G., The Lunar poles: water ice or chemically trapped hydrogen? Icarus, 2000, vol. 147, pp. 585–587.

    Article  ADS  Google Scholar 

  • Stegman, D.R., Jellinek, A.M., Zatman, S.A., Baumgardner, J.R., and Richards, M.A., An early lunar core dynamo driven by thermochemical mantle convection, Nature, 2003, vol. 421, pp. 143–146.

    Article  ADS  Google Scholar 

  • Taylor, R.S. and McLennan, S.M., Planetary Crusts: Their Composition, Origin, and Evolution, Cambridge: Cambridge Univ. Press, 2008.

    Book  Google Scholar 

  • Tera, F., Papanastassiou, D.A., and Wasserburg, G.J., Isotopic evidence foe a terminal lunar cataclysm, Earth Planet. Sci. Lett., 1974, vol. 22, pp. 1–21.

    Article  ADS  Google Scholar 

  • Wagner, R., Head, J.W., Wolf, U., and Neukum, G., Stratigraphic sequence and ages of volcanic units in the Gruithuisen region of the Moon, J. Geophys. Res.: Planets, 2002, vol. 107, no. 11, p. 5104. doi 10.1029/2002JE001844

    ADS  Google Scholar 

  • Watson, K., Murray, B.C., and Brown, H., The behavior of volatiles on the lunar surface, J. Geophys. Res., 1961, vol. 66, no. 9, pp. 3033–3045.

    Article  ADS  Google Scholar 

  • Wieczorek, M.A., The interior structure of the Moon: What does geophysics have to say? Elements, 2009, vol. 5, pp. 35–40.

    Article  Google Scholar 

  • Wieczorek, M.A. and Phillips, R.J., The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution, J. Geophys. Res., 2000, vol. 105, pp. 20 417–20 430.

    Article  ADS  Google Scholar 

  • Wieczorek, M.A., Neumann, G.A., Nimmo, F., Kiefer, W.S., Taylor, G.J., Melosh, H.J., Phillips, R.J., Solomon, S.C., Andrews-Hanna, J.C., Asmar, S.W., Konopliv, A.S., Lemoine, F.G., Smith, D.E., Watkins, M.M., Williams, J.G., and Zuber, M.T., The crust of the Moon as seen by GRAIL, Science, 2013, vol. 339, pp. 671–675.

    Article  ADS  Google Scholar 

  • Wilhelms, D.E., The Geologic History of the Moon, US Geol. Surv. Spec. Pap. 1348, Washington, DC: U.S. Dep. Inter., 1987, p. 302.

    Google Scholar 

  • Wilson, L. and Head, J.W., Lunar Gruithuisen and Mairan domes: rheology and mode of emplacement, J. Geophys. Res.: Planets, 2003, vol. 108, no. 2, p. 5012. doi 10.1029/2002JE001909

    ADS  Google Scholar 

  • Yamamoto, S.R., Nakamura, R., Matsunaga, T., Ogawa, Y., Ishihara, Y., Morota, T., Hirata, N., Ohtake, M., Hiroi, T., Yokota, Y. and Haruyama, J., Possible mantle origin of olivine around lunar impact basins detected by SELENE, Nat. Geosci., 2010, vol. 3, pp. 533–536.

    Article  ADS  Google Scholar 

  • Yamamoto, S.R., Nakamura, R., Matsunaga, T., Ogawa, Y., Ishihara, Y., Morota, T., Hirata, N., Ohtake, M., Hiroi, T., Yokota, Y. and Haruyama, J., Massive layer of pure anorthosite on the Moon, Geophys. Res. Lett., 2012, vol. 39, p. L13201. doi 10.1029/2012GL052098

    Article  ADS  Google Scholar 

  • Zuber, M.T., Smith, D.E., Watkins, M.M., Asmar, S.W., Konopliv, A.S., Lemoine, F.G., Melosh, H.J., Neumann, G.A., Phillips, R.J., Solomon, S.C., Wieczorek, M.A., Williams, J.G., Goossens, S.J., Kruizinga, G., Mazarico, E., et al., Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission, Science, 2013, vol. 339, pp. 668–671.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ivanov.

Additional information

Original Russian Text © M.A. Ivanov, A.T. Basilevsky, S.S. Bricheva, E.N. Guseva, N.E. Demidov, M. Zakharova, S.S. Krasil’nikov, 2017, published in Astronomicheskii Vestnik, 2017, Vol. 51, No. 6, pp. 473–489.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.A., Basilevsky, A.T., Bricheva, S.S. et al. Fundamental Problems of Lunar Research, Technical Solutions, and Priority Lunar Regions for Research. Sol Syst Res 51, 441–456 (2017). https://doi.org/10.1134/S0038094617060041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094617060041

Keywords

Navigation