Skip to main content
Log in

The Transfer Matrix of Differential-Algebraic Equations

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

The article deals with a few questions about the transfer matrix of a system of linear differential-algebraic equations (DAEs). Considering systems with a regular matrix pencil, we obtain the form of the transfer matrix whose minimal realization we propose to seek in the class of DAEs with the simplest internal structure: separated differential and algebraic components. To construct the state space of the algebraic subsystem, we use the skeleton decomposition of the matrix of coefficients of the corresponding matrix polynomial. For transfer matrices with parametric uncertainty we obtain existence conditions and propose an algorithm for constructing a minimal realization of the polynomial matrix as an algebraic subsystem with coefficients continuously depending on the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The author sticks to the terminology of [2].

  2. On the construction of \( Q \), see [16].

References

  1. Gantmakher F.R., The Theory of Matrices, Amer. Math. Soc. Chelsea, Providence (2000).

    Google Scholar 

  2. Dai L., Singular Control Systems, Springer, Berlin, Heidelberg, and New York (1989) (Lect. Notes Control Inform. Sci.; vol. 118).

    Book  MATH  Google Scholar 

  3. Nosov M.G., Kolchanova V.A., and Kuleshova E.O., Theoretical Aspects of Electrotechnics, Tomsk Polytechnic University, Tomsk (2012) [Russian].

    Google Scholar 

  4. Andryushin A.V., Sabanin V.R., and Smirnov N.I., Control and Innovations in Heat Energetics, MEI, Moscow (2011) [Russian].

    Google Scholar 

  5. Borisov B.M., Bol’shakov V.I., Malarev V.I., and Proskuryakov R.M., Mathematical Modeling and Calculation of Control Systems by Technical Objects, St. Petersburg Mining Institute, St. Petersburg (2002) [Russian].

    Google Scholar 

  6. Garcia-Moliner F. and Velasco V.R., Theory of Single and Multiple Interfaces: The Method of Surface Green Function Matching, World Sci., Singapore (1992).

    Book  Google Scholar 

  7. Perez-Alvarez R. and Garcia-Moliner F., Transfer Matrix, Green Function and Related Techniques, Universität Jaume I, Castello (2004).

    Google Scholar 

  8. Bessai H.J., MIMO Signals and Systems, Springer, New York (2005).

    Book  Google Scholar 

  9. Yang W.Y. and Lee S.C., Circuit Systems with MATLAB and PSpice, John Wiley and Sons, Singapore (2008).

    Google Scholar 

  10. Cullen D.J., “State-space realizations at infinity,” Int. J. Control, vol. 43, no. 4, 1075–1088 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  11. Debeljkovic D.L., Jovanovic M.B., and Jacic L.A., “Transfer function matrix and fundamental matrix of linear singular-descriptive systems,” Scientific-Technical Review, vol. 54, no. 1, 77–91 (2004).

    Google Scholar 

  12. Mutsuro A. and Koga M., “An improved algorithm for computing transfer function matrices of descriptor systems,” in: The 16th Intern. Conf. on Control, Automation and Systems (ICCAS) (2016), 634–637.

  13. Kaczorek T. and Sajewski L., “Transfer matrices with positive coefficients of positive descriptor continuous-time linear systems,” Conference on Automation, 86–94 (2019).

  14. Ilchmann A. and Reis T., “Outer transfer functions of differential-algebraic systems,” Control, Optimisation and Calculus of Variation, vol. 23, no. 2, 391–425 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  15. Reis T. and Voigt M., “Inner-outer factorization for differential-algebraic systems,” Math. Control Signals Syst., vol. 30, Article 15 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  16. Shcheglova A.A. and Kononov A.D., “Robust stability of differential-algebraic equations with an arbitrary unsolvability index,” Autom. Remote Control, no. 78, 798–814 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. Kononov A.D. and Shcheglova A.A., “Stability of an interval family of differential-algebraic equations,” J. Comput. System Sci., no. 6, 15–31 (2020).

    MathSciNet  MATH  Google Scholar 

  18. Chistyakov V.F. and Shcheglova A.A., Selected Chapters of the Theory of Differential Algebraic Equations, Nauka, Novosibirsk (2003) [Russian].

    MATH  Google Scholar 

  19. Shcheglova A.A., “Control of nonlinear algebro-differential systems,” Avtomat. i Telemekh., no. 10, 57–80 (2008).

    Google Scholar 

  20. Polyak B.T. and Shcherbakov P.S., Robust Stability and Control, Nauka, Moscow (2002) [Russian].

    Google Scholar 

  21. Voevodin V.V., Computational Foundations of Linear Algebra, Nauka, Moscow (1978) [Russian].

    Google Scholar 

  22. Chistyakov V.F., Algebraic-Differential Operator, Nauka, Novosibirsk (1996) [Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shcheglova.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 6, pp. 1411–1427. https://doi.org/10.33048/smzh.2022.63.617

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcheglova, A.A. The Transfer Matrix of Differential-Algebraic Equations. Sib Math J 63, 1208–1222 (2022). https://doi.org/10.1134/S0037446622060179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446622060179

Keywords

UDC

Navigation