Skip to main content
Log in

Direct Methods in Variational Field Theory

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We show that the Weierstrass–Hilbert classical field theory can be strengthened. Namely, for each extremal field, it is true that if an extremal is an element of the field then a minimum is attained in the class of Sobolev functions with the same boundary data as for the extremal and with graphs in the set covered by the field. This result remains valid if one of the extremals is singular. If there is a field containing more than one singular extremal then each of these extremals defines the minimization problem having no solution in the class of Lipschitz functions with graphs in the set covered by the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sychev M.A., “Variational field theory from the point of view of direct methods,” Sib. Math. J., vol. 58, no. 5, 891–898 (2017).

    Article  MathSciNet  Google Scholar 

  2. Buttazzo G., Giaquinta M., and Hildebrandt S., One-Dimensional Variational Problems. An Introduction, Oxford University, Oxford (1998).

    MATH  Google Scholar 

  3. Tonelli L., “Sur une méthode directe du calcul des variations,” Rend. Circ. Mat. Palermo, vol. 39, 233–264 (1915).

    Article  Google Scholar 

  4. Sychev M.A., “On the regularity of solutions of a one-dimensional variational problem,” in: Proceedings of the XXVII All-Union Scientific Student Conference “The Student and Scientific-Technological Progress” (Novosibirsk, 1989) [Russian], Novosibirsk University, Novosibirsk (1989), 60–65.

  5. Sychev M.A., “On the regularity of solutions of variational problems,” Russian Acad. Sci. Sb. Math., vol. 183, no. 4, 535–556 (1992).

    MathSciNet  MATH  Google Scholar 

  6. Sychev M.A. and Mizel V.J., “A condition on the value function both necessary and sufficient for full regularity of minimizers of one-dimensional variational problems,” Trans. Amer. Math. Soc., vol. 350, no. 1, 119–133 (1998).

    Article  MathSciNet  Google Scholar 

  7. Sychev M.A., “Another theorem of classical solvability ‘in small’ for one-dimensional variational problems,” Arch. Ration. Mech. Anal., vol. 202, 269–294 (2011).

    Article  MathSciNet  Google Scholar 

  8. Gratwick R., Sychev M.A., and Tersenov A.S., “Regularity theory for one-dimensional variational problems with singular ellipticity,” Doklady Math., vol. 94, no. 2, 490–492 (2016).

    Article  MathSciNet  Google Scholar 

  9. Gratwick R., Sychev M.A., and Tersenov A.S., “Regularity and singularity phenomena for one-dimensional variational problems with singular ellipticity,” Pure Appl. Funct. Anal., vol. 1, no. 3, 397–416 (2016).

    MathSciNet  MATH  Google Scholar 

  10. Gratwick R., Sedipkov A.A., Sychev M.A., and Tersenov A.S., “Pathological solutions of the Euler–Lagrange equation and existence/regularity of minimizers in one-dimensional variational problems,” C. R. Math. Acad. Sci. Paris, vol. 355, no. 3, 359–362 (2017).

    Article  MathSciNet  Google Scholar 

  11. Mandallena J.-P., “On the regularity of solutions of one-dimensional variational obstacle problems,” Adv. Calc. Var., vol. 11, no. 2, 203–222 (2018).

    Article  MathSciNet  Google Scholar 

  12. Tonelli L., Fondamenti di Calcolo delle Variazioni. Vols. 1 and 2, Zanichelli, Bologna (1921).

    MATH  Google Scholar 

  13. Ball J.M. and Mizel V.J., “One-dimensional variational problems whose minimizers do not satisfy the Euler–Lagrange equation,” Arch. Ration. Mech. Anal., vol. 90, no. 4, 325–388 (1985).

    Article  MathSciNet  Google Scholar 

  14. Clarke F.N. and Vinter R.B., “Existence and regularity in the small in the calculus of variations,” J. Diff. Equ., vol. 59, no. 3, 336–354 (1985).

    Article  MathSciNet  Google Scholar 

  15. Clarke F.N. and Vinter R.B., “Regularity properties of solutions to the basic problem in the calculus of variations,” Trans. Amer. Math. Soc., vol. 289, no. 1, 73–98 (1985).

    Article  MathSciNet  Google Scholar 

  16. Gratwick R. and Sychev M., “One-dimensional variational obstacle problems,” Pure Appl. Funct. Anal., vol. 4, no. 3, 547–558 (2019).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The study was carried out in the framework of the State Task (Project FWNF–2022–0008) and supported by the RFBR (Project 18–01–00649).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gratwick.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 5, pp. 1027–1034. https://doi.org/10.33048/smzh.2022.63.505

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gratwick, R., Sychev, M.A. Direct Methods in Variational Field Theory. Sib Math J 63, 862–867 (2022). https://doi.org/10.1134/S0037446622050056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446622050056

Keywords

UDC

Navigation