Skip to main content
Log in

Nonfinitary Algebras and Their Automorphism Groups

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let \( \Gamma \) be a linearly ordered set (chain), and let \( K \) be an associative commutative ring with a unity. We study the module of all matrices over \( K \) with indices in \( \Gamma \) and the submodule \( NT({\Gamma},K) \) of all matrices with zeros on and above the main diagonal. All finitary matrices in \( NT({\Gamma},K) \) form a nil-ring. The automorphisms of the adjoint group (in particular, Ado’s and McLain’s groups) were already described for a ring \( K \) with no zero divisors. They depend on the group \( {\mathcal{A}}(\Gamma) \) of all automorphisms and antiautomorphisms of \( \Gamma \). We show that \( NT({\Gamma},K) \) is an algebra with the usual matrix product iff either (a) \( \Gamma \) is isometric or anti-isometric to the chain of naturals and \( {\mathcal{A}}(\Gamma)=1 \) or (b) \( \Gamma \) is isometric to the chain of integers and \( {\mathcal{A}}(\Gamma) \) is the infinite dihedral group. Any of these algebras is radical but not a nil-ring. When \( K \) is a domain, we find the automorphism groups of the ring \( {\mathcal{R}}=NT({\Gamma},K) \) of the associated Lie ring \( L({\mathcal{R}}) \) and the adjoint group \( G({\mathcal{R}}) \) (Theorem 3). All three automorphism groups coincide in case (a). In the main case (b) the group \( \operatorname{Aut}{\mathcal{R}} \) has more complicated structure, and the index of each of the groups \( \operatorname{Aut}L({\mathcal{R}}) \) and \( \operatorname{Aut}G({\mathcal{R}}) \) is equal to \( 2 \). As a consequence, we prove that every local automorphism of the algebras \( {\mathcal{R}} \) and \( L({\mathcal{R}}) \) is a fixed automorphism modulo \( {\mathcal{R}}^{2} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ado I. D., “On nilpotent algebras and \( p \)-groups,” C. R. (Doklady) Acad. Sci., vol. 40, no. 8, 299–301 (1943).

    MathSciNet  MATH  Google Scholar 

  2. Jacobson N., “Structure theory of simple rings without finiteness assumptions,” Trans. Amer. Math. Soc., vol. 40, 228–245 (1945).

    Article  MathSciNet  Google Scholar 

  3. Jacobson N., “Structure theory for algebraic algebras of bounded degree,” Ann. Math., vol. 46, no. 2, 695–707 (1945).

    Article  MathSciNet  Google Scholar 

  4. Kaplansky I., “Forms in infinite-dimensional spaces,” An. Acad. Brasil. Cienc., vol. 22, 1–17 (1950).

    MathSciNet  Google Scholar 

  5. McLain D. H., “A characteristically simple group,” Math. Proc. Cambridge Philos. Soc., vol. 50, 641–642 (1954).

    Article  MathSciNet  Google Scholar 

  6. Anderson F. W. and Fuller K. R., Rings and Categories of Modules, Springer, New York (1973).

    MATH  Google Scholar 

  7. Levchuk V. M., “Some locally nilpotent rings and their adjoined groups,” Math. Notes, vol. 42, no. 5, 848–853 (1987).

    Article  Google Scholar 

  8. Kuzucuoglu F. and Levchuk V. M., “Isomorphisms of certain locally nilpotent finitary groups and associated rings,” Acta Appl. Math., vol. 82, no. 2, 169–181 (2004).

    Article  MathSciNet  Google Scholar 

  9. Gorchakov Yu. M., Groups with Finite Classes of Conjugate Elements, Nauka, Moscow (1978) [Russian].

    MATH  Google Scholar 

  10. Levchuk V. M., “Sylow subgroups of the Chevalley groups and associated weakly finitary groups and rings,” Acta Appl. Math., vol. 85, no. 1, 225–232 (2005).

    Article  MathSciNet  Google Scholar 

  11. Levchuk V. M. and Litavrin A. V., “Hypercentral automorphisms of nil-triangular subalgebras in Chevalley algebras,” Sib. Electron. Math. Rep., vol. 13, 467–477 (2016).

    MATH  Google Scholar 

  12. Merzlyakov Yu. I., “Equisubgroups of unitriangular groups: A criterion for selfnormalizability,” Russian Acad. Sci. Dokl. Math., vol. 50, no. 3, 507–511 (1995).

    MathSciNet  Google Scholar 

  13. Vershik A. M. and Kerov S. V., “On an infinite-dimensional group over a finite field,” Funct. Anal. Appl., vol. 32, no. 3, 147–152 (1998).

    Article  MathSciNet  Google Scholar 

  14. Hahn A. J., James D. G, and Weisfeiler B., “Homomorphisms of algebraic and classical groups: a survey,” Canad. Math. Soc. Conf. Proc., vol. 4, 249–296 (1984).

    MathSciNet  MATH  Google Scholar 

  15. Holubowskii W., “Parabolic subgroups of Vershik–Kerov’s groups,” Proc. Amer. Math. Soc., vol. 130, no. 9, 2579–2582 (2002).

    Article  MathSciNet  Google Scholar 

  16. Holubowskii W. and Slowik R., “Parabolic subgroups of groups of column-finite infinite matrices,” J. Algebra Appl., vol. 437, no. 2, 519–524 (2012).

    MathSciNet  MATH  Google Scholar 

  17. Holubowskii W., Algebraic Properties of Groups of Infinite Matrices, Politechniki Slaskiej, Gliwice (2017).

    Google Scholar 

  18. Slowik R., “Bijective maps of infinite triangular and unitriangular matrices preserving commutators,” Linear Multilinear Algebra, vol. 61, no. 8, 1028–1040 (2013).

    Article  MathSciNet  Google Scholar 

  19. Bekker J. V., Levchuk V. M., and Sotnikova E. A., “Non-finitary generalizations of nil-triangular subalgebras of Chevalley algebras,” The Bulletin of Irkutsk State University. Ser. Math., vol. 29, 39–51 (2019).

    Article  Google Scholar 

  20. Bekker J. V., Levchuk D. V., and Sotnikova E. A., “Automorphisms of rings of nonfinitary niltriangular matrices,” Trudy Inst. Mat. i Mekh. UrO RAN, vol. 26, no. 3, 7–13 (2020).

    Article  MathSciNet  Google Scholar 

  21. Levchuk V. M. and Zotov I. N., “Nonfinitary niltriangular algebras and their automorphism groups,” in: Proceedings of the International Conference “Malcev Readings,” Novosibirsk, Sobolev Inst. Mat. (2020), 202.

  22. Elisova A. P., “Local automorphisms and local derivations of nilpotent matrix algebras of small orders,” Vestn. SibGAU im. Academician M. F. Reshetnev, vol. 44, no. 4, 17–22 (2012).

    Google Scholar 

  23. Zotov I. N., “Local automorphisms of nil-triangular subalgebras of classical Lie type Chevalley algebras,” J. Sib. Federal Univ. Ser. Math. Phys., vol. 12, no. 5, 598–605 (2019).

    Article  MathSciNet  Google Scholar 

  24. Bass H., Algebraic K-Theory, W. A. Benjamin, New York and Amsterdam (1968).

    MATH  Google Scholar 

  25. Dubisch R. and Perlis S., “On total nilpotent algebras,” Amer. J. Math., vol. 73, 439–452 (1951).

    Article  MathSciNet  Google Scholar 

  26. Roseblade J. E., “The automorphism group of McLain’s characteristically simple group,” Math. Z., vol. 82, no. 4, 272–282 (1963).

    Article  MathSciNet  Google Scholar 

  27. Levchuk V. M., Suleimanova G. S., and Hodyunya N. D., “Nonassociative enveloping algebras of Chevalley algebras,” Trudy Inst. Mat. i Mekh. UrO RAN, vol. 26, no. 3, 91–100 (2020).

    Article  MathSciNet  Google Scholar 

  28. Levchuk V. M., “Connections between the unitriangular group and certain rings. II. Groups of automorphisms,” Sib. Math. J., vol. 24, no. 4, 543–557 (1983).

    Article  MathSciNet  Google Scholar 

  29. Kuzucuoglu F. and Levchuk V. M., “The automorphisms group of certain radical matrix rings,” J. Algebra, vol. 243, 473–485 (2001).

    Article  MathSciNet  Google Scholar 

  30. Levchuk V. M. and Suleimanova G. S., “Extremal and maximal normal abelian subgroups of a maximal unipotent subgroup in groups of Lie type,” J. Algebra, vol. 349, no. 1, 98–116 (2012).

    Article  MathSciNet  Google Scholar 

  31. Larson D. R. and Sourour A. R., “Local derivations and local automorphisms of \( B(X) \),” Proc. Sympos. Pure Math., vol. 51, 187–194 (1990).

    Article  MathSciNet  Google Scholar 

  32. Becker T., Escobar Salsedo J., Salas C., and Turdibaev R., “On local automorphisms of \( {\mathfrak{s}}{\mathfrak{l}}_{n} \),” Uzbek Math. J., no. 2, 27–33 (2019).

    Article  Google Scholar 

  33. Crist R., “Local automorphisms,” Proc. Amer. Math. Soc., vol. 128, 1409–1414 (2000).

    Article  MathSciNet  Google Scholar 

  34. Elisova A. P., Zotov I. N., Levchuk V. M., and Suleimanova G. S., “Local automorphisms and local derivations of nilpotent matrix algebras,” The Bulletin of Irkutsk State University. Ser. Math., vol. 4, no. 1, 9–19 (2011).

    MATH  Google Scholar 

  35. Elisova A. P., “Local automorphisms of nilpotent algebras of matrices of small orders,” Russian Math. (Iz. VUZ. Matematika), vol. 57, no. 2, 34–41 (2013).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work was supported by the Krasnoyarsk Mathematical Center financed by the Ministry of Science and Higher Education of the Russian Federation in the framework of the establishment and development of Regional Centers for Mathematics Research and Education (Agreement 075–02–2021–1388).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Zotov.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 1, pp. 104–115. https://doi.org/10.33048/smzh.2022.63.107

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotov, I.N., Levchuk, V.M. Nonfinitary Algebras and Their Automorphism Groups. Sib Math J 63, 87–96 (2022). https://doi.org/10.1134/S0037446622010074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446622010074

Keywords

UDC

Navigation